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ABSTRACT
With the advent of teaching primary and secondary computing
education, tools, languages, and environments (TLEs) are important
pedagogical support systems for students and teachers. While there
are a number of resources available for teaching K-12 students and
teachers, there is little synthesis of the data with respect to usage
and adoption rates for various TLEs. Using data extracted from
510 articles related to K-12 education, we conducted an analysis
using descriptive statistics to determine what TLEs in K-12 are
most frequently studied by researchers. We found 193 TLEs being
used in research studies and experience reports, then differentiate
between these two types of data and between students and teacher
professional development. This preliminary research provides a
first descriptive analysis of TLEs being used in K-12 space and
simultaneously sets the stage for creating a classification system
for TLEs based on the literature, including how they are used and
what topics (in or outside of computing education) they are used
to teach.
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1 INTRODUCTION
With the increased emphasis on teaching computing in primary
and secondary education across the globe [14, 27], there is also
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an increased interest in the tools, languages, and environments
(TLEs) used to teach K-121 students and teachers [2, 7, 19]. These
pedagogical support systems are not unlike many other manipula-
tives and resources used throughout education and are recognized
by organizations as a critical part of learning and understanding
computer science [2, 7].

TLEs at the post-secondary level have been of great interest
to the computing education research community, though prior to
2007, interest in computing education at the primary and secondary
levels did not appear frequently in documented discussions (via the
ACM SIGCSE-Members listserv) [4]. Further, there are only limited
references in the literature to the broader context of TLEs at the
primary and secondary levels and no full synthesis or empirical
investigation of the TLEs used.

Kelleher and Pausch (2005) understood the importance of TLEs
in helping students tackle the many challenges they face when
learning computing [17]. They developed a taxonomy for program-
ming environments and languages for novice programmers in the
context of the programming constructs the TLEs support and their
"approaches to making programming more accessible to novice pro-
gramers", further emphasizing the need of this research to remove
both mechanical and sociological barriers to programming [17, p.
84]. Gomez-Albarran (2005) also developed a high-level domain
structure for investigating 20 important tools [13]. More recently,
Malmi, Utting, and Ko (2019) emphasized the importance of study-
ing and evaluating TLEs in the context of student populations and
learning environments as well as the use of learning analytics in
these systems being considered at scale [19].

Based on this gap in the literature at the primary and secondary
levels and the critical nature of TLEs in teaching computing to K-12
teachers and students, we considered several questions that would
serve as a first step in a more comprehensive research agenda–
including what would be of immediate interest to the community
as we prepare to create a classification system for these tools to
identify gaps. Our overarching research questions for this particular
study became:What tools, languages, and environments used to teach
computing to primary and secondary students and teachers are most
frequently studied by researchers and reported on in practice via
experience reports?

This study is important for informing the computing education
community where research resources and efforts are most focused
and where the field currently stands. This study provides TLE devel-
opers with a reference point in viewing the context in which TLEs

1While not all global primary and secondary education systems consist of 13 grades
named K, 1, 2, ..12, "K-12" is becoming a widely used way of representing these grades.
It is in this context that K-12 is used throughout this paper.
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are referenced in the K-12 literature. More importantly, it provides a
better understanding of TLEs so broader questions about how they
are used, where they are used, and by whom can be considered.

2 BACKGROUND
2.1 Primary and Secondary Schools
There was little to be found in terms of systematic analysis of
the TLE landscape in the schooling prior to university. Grover
and Pea [15] published a comprehensive review of computational
thinking (CT) in K-12 in 2013. They indicate that there are several
programming tools available for supporting CT (e.g., robotics kits,
Scratch, Alice, GameMaker, Agentsheets, and Arduino). However,
their article does not address the prevalence of each of these tools
in the landscape of published work in the area.

Outside of formal literature, several organizations provide re-
sources for teachers to use in their classrooms. While none report
adoption rates, we infer that their availability means that they are
being used in the classroom. The Computer Science Teachers Asso-
ciation’s (CSTA) is an organization that supports K-12 computing
education in the United States and Canada. Their published stan-
dards for K-12 computing education [2] define learning objectives
and achievements for students learning computing concepts in the
K-12 space. Within the standards, no TLEs are specified, however,
a listing of professional development opportunities for teachers [3]
mentions some specific TLEs (Scratch, game-based programming).

The College Board provides Advanced Placement (AP) curricu-
lum for two computing courses at the high school level primarily in
the United States. For the AP Computer Science Principles course,
the College Board provides a list of approved curricular providers[5].
This list mentions JavaScript (4 times), Python (4), Scratch (3), Pro-
cessing (2), MIT AppInventor (1), PHP (1), Snap (1), SQL (1), and
Swift(1). The College Board does not provide information about
the percentage of usage of their suggested providers. The second
course, AP Computer Science A, is described as an introductory
college-level computer science course and expects Java to be used
as the programming language [6].

CSforAll originated as a New York City initiative in 2010 and
has evolved into providing resources for communities of providers,
schools, funders, researchers, and teachers interested in provid-
ing computing education in K-12 schools [1]. Members register to
be part of the community and provide information about what re-
sources, TLEs or curriculum they have available. There are currently
268 content providers registered with the site. Likewise, Code.org
arrived on the scene in 2013 with a mission to bring computing to
a wider audience with the Hour of Code [8]. They have expanded
their resources for supporting teachers to include curriculum for
elementary, middle, and high school and provide an online work
space for teachers to use with their students.

2.2 Post-Secondary Schools
Detailed information about TLE usage can be found in the ITiCSE
working group report Introductory Programming: A Systematic Lit-
erature Review, which describes a literature review for introductory
programming[18]. Examining data from years 2003 to 2017, the
group examined 2,189 articles related to the teaching of introduc-
tory programming. This review offers a listing of programming

environments and editors (section 6.4.2) as well as a listing of tools
developed specifically for learning programming (section 6.4.4).
Specific languages are mentioned, but statistics on how prevalent
these languages are in the papers analyzed are not provided.

De Raadt, Watson and Toleman (2002) created a census of what
all Australian universities were teaching in their introductory pro-
gramming courses in 2001 [10]. They reported on specific program-
ming language usage as well as specific IDE usage. This census was
repeated in 2003 [11], 2010 [22], 2013 [21], and 2016 [23]. Mason
and Simon (2017) present longitudinal data about the trends over
the 15 years to show the rise and fall of popularity of languages
and IDEs during that time [23].

In 2011, Davies, Polack-Wahl, and Anewalt surveyed 371 colleges
and universities within the United States and identified program-
ming languages used in CS0 and CS1 courses, reporting that 47% of
CS1 classes use a Graphical IDE, 15% use a command-line IDE, and
37% use a mix of both [9]. Likewise, Guo [16] looked at languages
used in CS0 and CS1 of the top 39 ranked US computer science
departments and found that the only languages used were Python,
Java, Matlab, C, C++, Scheme, and Scratch. The article does not
differentiate between which languages were used in CS0 or CS1.

Murphy, Crick, and Davenport give a report on Introductory
Programming Courses in the UK in 2017 [26]. Their report includes
information from 80 instructors from at least 70 institutions. They
report on specific languages and IDEs used in the courses. This
study uses the same questions and answer options as the earlier
study from Australasia [21].

2.3 Summary
Formal studies on the landscape of TLEs have been conducted at
the post-secondary level, though these studies are limited and only
one attempt at a taxonomy has been conducted. While it is clear
that there are a number of resources and resource centers available
for teachers interested in teaching students prior to post-secondary,
aside from thework in computational thinking [15], none of the data
is synthesized with usage/adoption rates for the various TLEs, nor
have these TLEs been aligned with curriculum standards. Further,
there is no method of determining what TLEs have the most impact
on academic achievement for the various standards.

3 METHODOLOGY
Malmi, Utting, and Ko (2019) [19] provide a categorical definition
of tools, including software applications, web applications provid-
ing some service, software frameworks, and definition languages
used to teach computing. Their categorization excludes profes-
sional tools, physical computing systems, and unplugged activities.
However, in published articles, a broad range of tools used in edu-
cation are referenced that may not have been specifically designed
for teaching computing [19]. For example, languages like Java and
JavaScript were not created to teach programming, but nevertheless
are used widely in computing education.

In many cases, it is easy to distinguish between tools, program-
ming languages, and development environments. C, for example,
is easy to identify as a language. Brackets, NotePad++, Sublime or
other editors are tools for editing code. An environment for devel-
oping code may include the editors, the terminal window, and the
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compiler that is used to compile (and execute) the code. In other
cases, an editor or integrated development environment (IDE) may
be created specifically for the purpose of one language and the IDE
cannot be separated from it. For example, Scratch could be classified
as an IDE but the block-styled language that is used to program
within Scratch cannot be separated from the IDE [20].

In some forms of teaching computing, particularly computational
thinking, physical manipulatives are used. Though these materials
are somewhat abstract, they have been shown to be effective in
teaching concepts to a variety of age groups. We refer to these as
tools, rather than materials, since materials can convey medium
like textbooks, forums, and journal entries. Likewise, the process of
capturing unplugged activities and products designed for primary
and secondary education requires a broader definition of tools,
languages, and environments than defined by Malmi, et. al., or than
currently exist in the field of professional software development.

Given the current lack of formal definitions that encompass all
aids mentioned in the literature, we use the term tools, languages,
and environments to broadly capture those formal materials that
have been studied in research studies or mentioned in experience
reports as part of the overall student experience. This is a necessary
first-step in understanding the many types of TLEs used so that
a detailed ontology can be developed in the future. The following
sections describe the data source from which this study derives and
the analysis conducted on the data.

3.1 Data Source
The data used for this study is a subset of the publicly available
dataset from CSEdResearch.org, a site that houses summaries of
articles related to primary and secondary computing education
[12, 24, 25]. The initial set of 510 articles focused on primary and sec-
ondary computing education across ten publication venues (2012-
2018) were included in this analysis. The dataset represents manu-
ally curated data from the articles and the articles originated from
ten publication venues, including ACM and IEEE journals and con-
ference proceedings related to computing education, Computer
Science Education, and Koli Calling2 [24]. To identify these articles,
all of the abstracts for all of these venues were carefully read to de-
termine if they were focused on primary and secondary education.
If the researchers determined that it was, then the researchers either
manually curated the data or gave the articles to the data curation
team (undergraduate students [25]). If the data was curated from
the undergraduate student team, then the researchers provided a
second review to validate the data.

Though many of the publication venues in which the articles
appear and the data is extracted are open to all countries, the re-
porting of the TLEs comes primarily from the United States (U.S.),
with 185 (50.1%) of the papers covering students located in the
U.S., followed by the United Kingdom with 19 (5.1%), Brazil with
16 (4.3%), Israel with 14 (3.8%), and Spain with 11 (3.0%).

2ACM International Computing Education Research, ACM Innovation and Technology
in Computer Science Education, ACM SIGCSE Technical Symposium on Computer
Science Education, ACMTransactions on Computing Education, Frontiers in Education,
IEEE Global Engineering Education Conference, IEEE Transactions on Education,
Journal of Educational Computing Research, Koli Calling, Taylor & Francis’ Computer
Science Education
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Figure 1: Number of TLEs mentioned in studies/reports
across the years

3.2 Data Analysis
The CSEdResearch.org dataset is stored in a MySQL database. To
extract data related to this study, one of the researchers constructed
and executed over a dozen SQL queries over the entire set of data,
extracting the pre-specified subsets of the data to be analyzed. The
results were verified and then exported and stored into comma-
separated value (.csv) files. Only descriptive statistics (count and
percentage) were calculated for the purposes of this study. The
descriptive statistics were calculated for the following data:

• TLEs used in informal and formal learning environments
across the entire dataset

• TLEs used in professional development (PD) studies
• TLEs used in studies of students (total), those used in re-
search studies of students, and those used in experience
reports of teaching students

• TLEs used across the countries where students were located
To contextualize the impact and usage of these tools, separate

SQL queries were created and executed so that we could provide the
number of participants in these studies and experience reports at
the aggregated level. Though we understand the results can provide
context, these numbers reflect an entire study and may be over-
inflated in some instances due to the type of study being conducted
and the manner the data was presented in the original article. For
example, if the study was a treatment-control group study, and 50
students participated in the study with 25 in each group, only 25
students might have been exposed to the TLE.

4 RESULTS
Of the articles in the original dataset, 247 (48%) were research arti-
cles, 236 (46%) were experience reports, and 27 (5%) were position
papers. For the purposes of this analysis, we exclude position papers
in the study in order to focus on activities and curriculum described
in the research articles and experience reports. We found 193 TLEs
as part of an activity or curriculum reported within the research
articles and experience reports. Figure 1 shows the number of TLEs
appearing in articles over the years.

4.1 General Overview
To determine which TLEs are most often referenced, we first ran a
query on the TLEs referenced throughout articles that are focused
on both teachers (through professional development) and students.
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Table 1: Most reported TLEs listed by article count (includes
students and teachers as learners), N=605. Note that many
studies include more than one TLE.

TLE # %

Scratch 85 14.0%
Java 25 4.1%
Python, AppInventor 24 4.0%
Alice, Arduino (non-Lilypad) 22 3.6%
CS Unplugged, Lego 21 3.5%
Lego Mindstorms 19 3.1%
Pololu 3PIs 12 2.0%
Greenfoot 11 1.8%
C#, HTML, Alice, Lego NXT, Processing 8 1.3%
AgentCubes, CSS, Snap!, Logo 7 1.2%

Table 2: Most reported TLEs listed by number of learn-
ers (students and teachers as learners) reported in articles,
N=419.

TLE # %

Scratch 116,723 55.9%
AgentSheets 11,064 5.3%
AgentCubes 10,413 5.0%
Alice 7,393 3.5%
Java 6,751 3.2%
CSS 6,673 3.2%
Python 6,354 3.0%
Arduino (Not LilyPad) 6,163 3.0%
Bebras Challenge 6,081 2.9%
Greenfoot 6,001 2.9%

The most reported TLE was Scratch (14.0% of articles), followed
by Java (4.1%), Python and AppInventor (4.0% each), and Alice and
Arduino (non-Lilypad) (3.6% each) (see Table 1).

We provide a snapshot of the primary and secondary learner
usage (students and teachers taking PD) of these TLEs in the 369
research studies and experience reports in Table 2, with the caveat
described in the data analysis section above. The learner usage of
these tools in their entirety is impressive, with a reach of 208,688
learners. Of these learners, approximately 116,723 (56.0%) used
Scratch. The next closest TLEs are AgentSheets and AgentCubes
with 11,064 (5.3%) and 10,413 (5.0%) learners, respectively, studied
or reported.

4.2 Students as Learners
We analyzed the data by considering those articles that reported on
research studies or experience reports with primary and secondary
students as the participants. Therewere 208,071 student participants
in the articles, with Scratch being studied and used in the majority
(77 articles (14.4%)), followed by Java, AppInventor, Arduino (not
LilyPad), Python, and Alice (see Table 3).

Analyzing the data based on the number of participants reported
in the study or report, Scratch is again on top, with 116,434 (56.0%)

Table 3: Most reported TLEs listed by article count, N=535,
primary and secondary students only.

TLE # %

Scratch 77 14.4%
Java 24 4.5%
AppInventor 21 3.9%
Arduino (not LilyPad), Python 20 3.7%
Alice, CS Unplugged 17 3.2%
Lego Mindstorms 15 2.8%
Greenfoot, Pololu 3PIs 10 1.9%
C#, Processing, HTML, Alice 2.2 8 1.5%
CSS, Logo, Lego NXT, AgentCubes, Snap! 7 1.3%
EarSketch, JavaScript, LilyPad Arduino 6 1.1%

Table 4: Most reported TLEs listed by number of primary
and secondary students (N=208,071) in the study or report.

TLE # %

Scratch 116,434 56.0%
AgentSheets 11,057 5.3%
AgentCubes 10,406 5.0%
Alice 7,331 3.5%
Java 6,747 3.2%
CSS 6,673 3.2%
Python 6,332 3.0%
Arduino (Not LilyPad) 6,163 3.0%
Bebras Challenge 6,081 2.9%
Greenfoot 6,001 2.9%

students (see Table 4). AgentSheets and AgentCubes follow, garner-
ing 5.3% and 5.0% respectively.

4.2.1 Research Studies. We excluded experience reports and ana-
lyzed the research studies where primary and secondary students
were participants. Within this subset of the data, Scratch is the
most frequently researched, appearing in 45 (18.5%) of the studies,
followed by AppInventor and CS Unplugged (4.9%), and Alice (4.1%)
as shown in Table 5.

When analyzing the data by number of students as participants
in the studies, Scratch again ranked number one with 13,953 partic-
ipants (18.6%), followed by AgentCubes and AgentSheets (10,000
each at 13.3%), Alice (6,731 at 9.0%), and CSS (6,648 at 8.8%) (see
Table 6).

4.2.2 Experience Reports. We analyzed the experience reports
where primary and secondary students were the participants.
Within this subset of the data, Scratch is the most frequently re-
searched, appearing in 32 (11.0%) of the studies, followed by Java
(5.9%), Python (4.5%), and Arduino (4.5%) as shown in Table 7.

When analyzing the data by number of students as participants
in the studies, Scratch again rated highest with 102,580 participants
(77.0%), followed by Bebras Challenge (4.6%), Python (4.5%), and
Arduino and AppInventor (4.4% each) (see Table 8).
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Table 5: Most reported TLEs listed by those used in re-
search studies (N=243) most frequently (includes students
and teachers as learners).

TLE # %

Scratch 45 18.5%
AppInventor, CS Unplugged 12 4.9%
Alice 10 4.1%
CS Unplugged, Lego Mindstorms, Python 7 2.9%
C# 5 2.1%
CSS, Logo, Snap!, Lego NXT, Kodu 4 1.6%

Table 6: Most reported TLEs listed by those researched
most frequently (includes students and teachers as learners,
N=75,196).

TLE # %

Scratch 13,953 18.6%
AgentCubes, AgentSheets 10,000 13.3%
Alice 6,731 9.0%
CSS 6,648 8.8%
Java 6,240 8.3%
Greenfoot 5,878 7.8%
CS Unplugged 1,720 2.3%
Bootstrap 1,674 2.2%
C# 1,337 1.8%
Jypeli 1,018 1.4%

Table 7: Most reported TLEs listed by those used most fre-
quently in experience reports (N=290).

TLE # %

Scratch 32 11.0%
Java 17 5.9%
Python, Arduino (not LilyPad) 13 4.5%
AppInventor 9 3.1%
Lego Mindstorms 8 2.8%
Pololu 3PIs, Greenfoot, Alice 7 2.4%
Processing 6 2.1%
C++, CS Unplugged 5 1.7%
Alice 2.2, HTML, AgentCubes 4 1.4%

4.3 Professional Development
We examined the types of TLEs used in PD that are being stud-
ied (see Table 9). As expected, the list starts to reflect differences;
however, Scratch is still the most frequently used TLE in PD.

Some articles were focused on teachers as learners in professional
development, with the number of students (if known) that they
teach provided within the articles or reports. Scratch still rated the
highest, with 8 articles reporting that it was used as a TLE (see
Table 10). Only the number of times the TLEs are reported in the
articles focused on PD is presented here, since the data for the

Table 8: Most reported TLEs listed by number of K-12 stu-
dents (N=133,274) engaged in the experience and reported
in experience reports.

TLE # %

Scratch 102,580 77.0%
Bebras Challenge 6,081 4.6%
Python 5,941 4.5%
Arduino (not LilyPad) 5,869 4.4%
AppInventor 1,126 4.4%
AgentSheets 1,057 0.8%
Scalable Game Design 894 0.7%
Alice 2.2 656 0.5%
Alice 600 0.5%
Java 507 0.4%
Pololu 3PIs 438 0.3%

Table 9: Most reported TLEs listed by number of teachers
receiving PD, N=635.

TLE # %

Scratch 299 47.3%
CS Unplugged 71 11.2%
NetLogo 66 10.4%
Alice 62 9.8%
HTML 32 5.1%
Python 22 3.5%
Moodle 19 3.0%
Stencyl 16 2.5%
AgentCubes, AgentSheets, Scalable Game Design 7 1.1%
Lego Mindstorms, Lego NXT-G 5 0.8%

Table 10: Most reported TLEs listed by number of teachers
taking PD that are reported in articles (N=75).

TLE # %

Scratch 8 10.8%
Alice 5 6.8%
CS Unplugged, Lego Mindstorms, Python 4 5.4%
AppInventor 3 4.1%
Java, Bebras Challenge, Arduino (not LilyPad),
Alice, Lego NXT-G, Polulo 3PIs, Scratch Jr., Mi-
crosoft Kinect, Google Drive

2 2.7%

learner impact would need more in-depth analysis of the articles to
ensure data integrity.

5 DISCUSSION
The results support previous studies, indicating that some (though
not much) movement has been made in TLEs, and illustrate the new
additions to the set commonly used in K-12 computing education.
The results empirically confirm Grover and Pea’s (2013) findings
that Scratch, Alice, Kodu, Greenfoot, Arduino boards, AgentSheets
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and AgentCubes are popular TLEs [15]. Scratch is mentioned by the
CSTA as well as game programming. Though we cannot confirm
in this particular study whether or not TLEs are being used in the
context of game programming (outside of PyGame, GameMaker,
GameFroot, Scalable Game Design and XNA Game Studio, all of
which appear as a TLEs), we can confirm Scratch is a well-vetted
TLE that may offer a hearty learning experience for students [3].

Our results align with TLEs mentioned by the College Board,
since JavaScript, Python, Scratch, Processing, AppInventor appear
on their list [7]. PHP, Snap, SQL and Swift are all TLEs that do not
appear as any top TLEs. Code.org also appears, although it hasn’t
been studied or mentioned in experience reports as frequently [8].
Though we did not analyze the content providers on the CSforAll
site, this could be a potential way to find current information about
TLEs that are used more casually–without formal studies or experi-
ence reports conducted using them [1].

These findings also align with the results of reviews of TLEs used
for teaching computing at the post-secondary level. Java, Python,
Scratch, and AppInventor all appear in both lists. C++ is referenced
in only 5 papers total. However, ActionScript, Pascal, and Karel++
do not appear in our dataset since they are not reported in expe-
riences or studies with K-12 students or teachers. Java, a popular
choice among CS1 courses, appears infrequently in research arti-
cles. With the TLEs in our Background section focused on novice
programmers, it makes sense that this overlap exists.

5.1 Limitations
One of the more pressing limitations is that the data curation pro-
cess can only be as thorough as the data reported in the articles.
Despite accepted best practices, not all authors report the number
of participants in the study or experience. Therefore, the actual
counts may be greater for some tools than others. Though there are
continual efforts to improve reporting throughout the computing
education community, we hope this study further illuminates the
need for more accurate reporting in publications. In addition, the
articles accepted to these publications may suffer from reviewer
bias. Reviewers may be more inclined, for example, to accept or
reject Scratch due to its popularity.

The data was manually curated from the articles. Despite the
fact that each article underwent two reviews, data entry errors
may have occurred. We also note that the dataset predominantly
includes studies and reports conducted in the United States. This
may skew the data and leaves room for further analysis of countries
outside the U.S. for a comparison and contrast study.

Several articles may have been written on one study, increas-
ing the likelihood that the TLEs mentioned are used with fewer
participants and classrooms than they really are. We emphasize
throughout the results and discussion section that what we are
measuring is the frequency in which they appear in studies, not in
the learning environments.

Occasionally, some articles include students who are undergrad-
uates. For example, a camp may have been taught by undergraduate
students to high school students or a particular study may have
included both high school and undergraduate students. Though
these appear infrequently in the database, it may have affected the
participant numbers. This is in addition to the preemptive caveat

mentioned in the Methodology section that we repeat here. Par-
ticipant numbers may be over-inflated in some instances due to
the type of study conducted and how data was presented in the
original article. For example, if the study was a treatment-control
group study, and 50 students participated in the study with 25 in
each group, only 25 students might have been exposed to the TLE.

5.2 Future Research
The purpose of this study was to begin to understand the data and
how it can be analyzed further. We are particularly interested in
pursuing research to answer the following questions:

• What would a current, comprehensive taxonomy/ontology for
classifying TLEs look like as computing education expands into
K-12?

• What has been the evolution of these tools, languages, and
environments in primary and secondary education?

• What types of studies are still needed with respect to tools,
languages, and environments to understand their efficacy in
primary and secondary settings?

• How can we map existing TLEs against K-12 standards to find
gaps based on the needs of primary and secondary computing
education?

In addition to those much larger picture research questions, addi-
tional data analysis could be conducted to answer other questions.
For example, what are the changes of TLEs used over time? What
are the differences in TLEs used in informal versus formal edu-
cation? What are the differences within primary and secondary
education–such as early primary, late primary and secondary edu-
cation? This additional analysis may be of interest to researchers
and educators as the K-12 computing education field takes shape.

6 CONCLUSION
TLEs are of unique interest to computing education researchers.
Not only is it important to understand their impact on academic
achievement, including social-behavioral factors like self-efficacy
and sense of belonging, but it is also important to understand the
context in which TLEs are used (e.g., topics, student demographics).
These critical research areas can provide the data needed to improve
these products that are oftentimes created by other computing
education researchers. This research can also provide us with a
greater understanding of what are the most effective TLEs to use
for various demographic groups, provide data on topic areas that
are well-covered by TLEs, and help identify gaps where additional
enhancements to existing TLEs or new TLEs could be developed.

The lack of knowledge of what TLEs have been used with what
correlating outcomes is limiting our current understanding of how
to best deliver computing education in the K-12 space. Though we
are limited in space with this study to investigate these more major
questions, this study serves as another step towards addressing
these questions on a larger scale.
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