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Abstract: There has been considerable investment in pre-college educational interventions for all
areas of STEM (including computer science). The goal of many of these initiatives is to engage and
interest students early in their educational career. In this study, a systematic literature review was
undertaken to determine the demographic and program data collected and reported for the field of
computing education and for other STEM disciplines for activities that were not designed as part
of the formal in-class curriculum (e.g., outreach activities). A comparison-contrast analysis of the
resulting 342 articles found similarities and key differences in the reporting of this data as well as
overarching characteristics of missing or incomplete reporting across disciplines. Authors from both
fields reported equally well in the four categories studied: information about evaluation, participant
gender, participant race and/or ethnicity, and activity demographics. However, the computing
education articles were more likely to have clearly stated research questions and comparative analysis
based on demographic characteristics. They were less likely to include the number of participants
in the study, participant age/grade level, socioeconomic status, disability information, location of
intervention, and instructor demographics. Through this analysis, it was determined that reporting
can be improved across all disciplines to improve the quantity of data needed to replicate studies and
to provide complete data sets that provide for the comparison of collected data.

Keywords: pre-college computing activities; pre-college engineering activities; pre-college STEM
activities; K–12; literature review; computing outreach; engineering outreach; STEM outreach

1. Introduction

When President Obama publicly announced the Computer Science for All initiative in January
2016 [1], it consolidated a growing movement within the computing education community in the
United States (U.S.) to bring computing into schools prior to university [2]. Since that time, there has
been a growth in the number of states in the U.S. adopting standards for computing education in
primary and secondary (K–12) schools, with all but six states having adopted some sort of computing
policy or standards as of the 2018 State of Computer Science Education report compiled by Code.org [3].
Organizations such as the Computer Science Teachers Association (CSTA) and ISTE have released
standards for learning not just about technology, but about computing and computational thinking at
the K–12 level [4,5]. This effort is not localized to the U.S., and there are examples of organizations and
standards in other parts of the world that mirror these efforts [6–8].

However, prior to and even when standards are approved and adopted, there is a wide variety
of ways in which the content is being delivered, including activities both within and outside the
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classroom [9–12]. It remains unclear from the computing education literature what the most effective
practices are for engaging students with this material as well as the long-term effectiveness of these
activities, particularly with regard to claims of fostering student interest in the discipline [13,14].
With increasing effort, time, money, and resources being invested in pre-college computing education,
being able to determine empirically the best interventions for a specific target demographic or
environment can be valuable to the community.

Further, credible research and findings rely on two important indicators—replication and
generalizability. Replication is needed in order to determine whether the results of a study are robust
or whether they were merely an anomaly [15]. Due to the newness of computing education, replication
studies in educational research are still lacking and the data that are reported are incomplete [14,16,17].
However, other STEM education fields (e.g., chemistry, medicine, and psychology) have similar
issues with lack of replication [18–20]. This limits how confident researchers can be about the results
of educational research studies, with the U.S. National Science Foundation recognizing this and
publishing Companion Guidelines for Replication and Reproducibility in Education Research in
November 2018 [21]. In it, there is a call for more transparency in research, open data access policies,
and full documentation of the features of the study, including population, context, and fidelity of
implementation. Interventions and populations need to be reported in a consistent manner to allow
for better comparison amongst the findings and allow for better replication of the studies, providing
researchers with the critical empirical evidence needed to identify best practices among various
demographic groups of learners.

Unlike computing, most of the other STEM fields, including their many subdisciplines, have a
long-standing and strong presence in the formal pre-college curriculum. While computing is just
starting to become part of state standards of education, other disciplines have been part of the standards
for decades. Based on previous research showing a deficiency of reporting on many important variables
in computing education and the need to report elements of a study design adequately for replication,
the researchers considered whether more established STEM fields reported data from pre-college
educational activities more holistically in educational research and whether insight could be gained
from the reporting of data in these fields [13,14,16]. Therefore, the following research questions guide
this part of the work:

• [R1] What type of longitudinal and sequential data collection techniques have been used in the
formal, peer-reviewed research that has been conducted on pre-college computing activities for
the years 2014–2016?

• [R2] What type of longitudinal and sequential data collection techniques have been used
in the formal, peer-reviewed research that has been conducted on STEM activities for the
years 2014–2016?

• [R3] What are the similarities and differences between the reporting of pre-college computing
activities and other STEM disciplines?

This work is important for K–12 education researchers in computing, K–12 education researchers
in STEM fields, K–12 education evaluators, and other stakeholders invested in improving computing
education as the K–12 community starts teaching computing to a wide variety of students. It is also
important in identifying best practices and is, therefore, impactful on the work being performed by
curriculum designers to bring computing into K–12 classrooms. Other stakeholders are institutions
such as the U.S. National Science Foundation, Department of Education, and other policymakers
who are recognizing the need for more replication of education research to increase the confidence of
research findings that inform best practices.

The remainder of this paper is organized as follows. Section 2 discusses the framework and
steps undertaken to conduct the systematic literature reviews. Section 3 describes the study results,
including demographic information as well as data reported on the activities. Section 4 is a discussion
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of these results put into the context of previous research. Section 5 provides a high-level overview and
its potential impact on future work.

2. Materials and Methods

To answer the research questions, the researchers undertook a systematic literature review
following the framework developed by Khan, Kunz, Kleijnen, and Antes [22]. The framework has
five foundational steps: frame the question, identify relevant work, assess the quality of the studies,
summarize the evidence, and interpret the findings.

Although there was not a protocol pre-registered for this study, Figure 1 shows the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 flow diagram of the
process. It is referenced throughout the discussion of the methods when describing how the initial set
of 5917 articles was reduced to 342 articles for inclusion in this study via the five steps of the systematic
literature review.
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2.1. Framing the Question

While the research questions guide this work overall, it is important to further define some of
the aspects of this work and the guiding principles for determining what type of educational activity
qualifies for this analysis. For this analysis, only activities that are created and administered outside
of the formal in-class curriculum are considered. For purposes of this work, the formal in-class
curriculum refers to curricula that fulfill state/national education requirements and/or content that
is offered as part of a school’s required or elective course or module. Some examples of the types
of activities that are not part of the formal in-class curriculum include outreach activities, summer
camps, and after school programs. Also, since the research questions are looking for data collection
techniques and reporting, the articles must provide the data collected and the analysis or evaluation of
the educational activity.

To summarize, the following criteria was used for inclusion:

• Computing or STEM activity
• Designed for K–12 participants (students or teachers)
• Designed to teach computing, computational thinking, STEM concepts
• Outside of standardized curriculum or courses
• Provides information about participants, data collected, assessment and/or evaluation

2.2. Identifying Relevant Work

This section, explains how the sources were identified for both computing and STEM research
venues for this study as well as how the articles were subsequently identified within these venues.

2.2.1. Venue Identification Procedures

Since there were two sets of data collected, one on computing activities and one on STEM activities,
this methodology for identifying relevant educational research is presented in separate sections.

Computing Education

In the academic discipline of computing (or computer science), publishing in journals is not as
common as publishing in conference proceedings. The Association for Computing Machinery (ACM)
and Institute of Electrical and Electronics Engineers (IEEE) are the premier international associations
for publishing computing education research. Both sponsor conference and journal publications that
are considered the most reliable sources for formal, blind, peer-reviewed computing education research.
Also included in the set of sources are any additional venues (conferences or journals) from outside of
those two organizations that are recognized within the computing education community as presenting
relevant and high-quality work. Table 1 shows the final list of venues for inclusion in this literature review.

Table 1. Table of venues for computing education literature.

Sponsor Title Type

ACM International Computing Education Research (ICER) Conference

ACM Innovation and Technology in Computer Science Education (ITiCSE) Conference

ACM Technical Symposium on Computer Science Education (SIGCSE) Conference

ACM Transactions on Computing Education (TOCE) Journal

Taylor and Francis Computer Science Education (CSE) Journal

IEEE IEEE Global Engineering Education Conference (EDUCON) Conference

IEEE Frontiers in Education (FIE) Conference

IEEE Transactions on Education (TOE) Journal

Sage Journal of Educational Computing Research (JECR) Journal

Koli Calling International Conference on Computing Education Research (Koli) Conference
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Closely Related STEM Disciplines

In order to identify relevant work in closely related STEM areas, a working definition of STEM
is needed. In Science, Technology, Engineering, and Mathematics (STEM) Education: A Primer STEM is
defined as “Some federal agencies, such as the NSF, use a broader definition of STEM that includes
psychology and the social sciences (e.g., political science, economics) as well as the so-called core
sciences and engineering (e.g., physics, chemistry, mathematics). Others, including the Department
of Homeland Security (DHS), U.S. Immigration and Customs Enforcement (ICE), use a narrower
definition that generally excludes social sciences and focuses on mathematics, chemistry, physics,
computer and information sciences, and engineering. Some analysts argue that field-specific definitions
such as these are too static and that definitions of STEM should focus on “an assemblage of practices
and processes that transcend disciplinary lines and from which knowledge and learning of a particular
kind emerges.” [23] (p. 2)

Further analysis led to an article by Freeman et al. [24] which indicates that in their literature
review “We used four approaches (35) to find articles for consideration: hand-searching every issue
in 55 STEM education journals from June 1, 1998 to January 1, 2010 . . . searching seven online
databases using an array of terms, mining reviews and bibliographies (SI Materials and Methods),
and “snowballing” from references in articles admitted to the study (SI Materials and Methods).”
(p. 8414). The researchers chose to adopt the 55 journals listed in Table S3 of [24], which mirrored
the process undertaken to define computing venues. Of these 55 journals, journals that focused
on undergraduate education as noted by its title, aim, and/or scope were removed (Journal of
Undergraduate Neuroscience Education, Research in Collegiate Mathematics Education, Chemistry Education:
Research and Practice (UnivChemEdu), Journal of College Science Teaching, Active Learning in Higher
Education, Advances in Engineering Education, Chemical Engineering Education, International Journal of
Electrical Engineering Education, International Journal of Mechanical Engineering Education, American
Journal of Physics).

Then, journals that focused on computing education and/or were already evaluated were removed:
ACM SIGCSE Bulletin, Computer Science Education, and Journal of Educational Computing Research.

Next, the description of each journal along with the titles and abstracts of the articles in the most
current issue were evaluated. If these appeared to be focused on post-secondary education, they were
then removed from the list (Advances in Physiology Education, Bioscience, Journal of Food Science Education,
Journal of Microbiology and Biology Education, International Journal of Engineering Education).

Additional journals were removed due to the lack of a focus on education (BioScience (only
one education related article in Jan–April 2017)), no articles during the 2014–2016 time period
(Chemical Education International, Engineering Science and Education Journal, Mathematics Education
Review, Astronomy Education Review), or for being solely curriculum and activity focused (with no
assessment/evaluations or data about the activity provided) (Physics Education).

After these journals were removed, 31 journals remained. The size of this set was three times
the size of the set of computing venues. To create a set of venues of similar size to the number of
computing venues, sampling was needed. Looking at the number of venues for each subdiscipline for
those that were over-represented, a systematic sampling technique, where every nth sample from a list
is included was used [25].

The first aim of the sampling was to create an almost equivalent number of venues focused on
each of the subdisciplines of STEM to not have one subdiscipline dominate the results. Chemistry,
Geology, and Psychology each had one venue. Engineering had two venues that encompassed all
of the subdisciplines of engineering, which the researchers considered to be an appropriate number
in relation to the others. Biology had three venues, which were also deemed an acceptable number.
Physics had four venues, which would cause it to be the largest sample in the sciences. To bring this
number in alignment with Biology, one venue needed to be removed. A random number generator
was used to determine which of the venues (1–4) should be eliminated. The number three was chosen
and the third venue was eliminated.
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For Mathematics, there were ten venues. A systematic sampling of every other would yield five
venues which may have over-skewed the sample to mathematics education. A systematic sampling of
every third would yield four venues. While this is higher than the other subdisciplines, mathematics
is taught more broadly than the specific sciences in the pre-college curriculum and this was deemed
acceptable by the researchers for the sample. There were also ten General STEM venues and a
systematic sampling of every other venue would yield five venues. Since these were general STEM
venues encompassing any part of STEM, five seemed reasonable. This systematic sampling yielded
19 venues, which was still almost double the amount of computing venues, but seemed to accurately
represent the subdisciplines of STEM. The included and excluded venues are shown in Table 2.

Table 2. Table of venues for STEM literature.

Discipline Journal Name 1

Biology Biochemistry and Molecular Biology Education (Biochem Ed)
CBE—Life Sciences Education
Journal of Natural Resources and Life Sciences Education

Chemistry Journal of Chemical Education
Engineering European Journal of Engineering Education

Journal of Engineering Education
General STEM Electronic Journal of Science Education

International Journal of Science and Mathematics Education
International Journal of Science Education
Journal of Research in Science Teaching
Journal of Science Education and Technology
Journal of STEM Education
Research in Science Education
Research in Science and Technological Education
Science Education
Science Educator

Geology Journal of Geoscience Education
Math, Statistics, CS Educational Studies in Mathematics

Electronic Journal of Mathematics and Technology
Eurasia Journal of Mathematics, Science, and Technology Education
International Electronic Journal of Mathematics Education
Journal for Research in Mathematics Education
Journal of Statistics Education
Mathematics Education Research Journal
Primus
Research in Mathematics Education
Statistics Education Research Journal

Physics and Astronomy Physical Review—Physics Education Research
Physics & Astronomy
Physics Education
The Physics Teacher

Psychology Teaching of Psychology
1 Shaded rows indicate journals not included in this analysis.

Additionally, some of the venues that were identified for computing education also had articles
relating to general STEM education and in the review process, articles from those venues were also
included in the STEM set of articles as they were found. Additional STEM articles were found in IEEE
EDUCON, IEEE FIE, IEEE TOE, and JECR.

2.2.2. Article Identification Procedures

The next step in the process was to determine which articles in each publication should be included
in the literature review. To do this, a manual reading of each abstract was conducted to determine
whether the content of the studies reflected in each article contained the following characteristics:

• Designed for K–12 participants or teachers
• STEM/Computing educational activity or process
• Outside of standardized curriculum or courses
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• Provided information about participants, data collected, assessment and/or evaluation
• Categorized as computing if designed to teach exclusively computer science or computational thinking
• Categorized as STEM if designed to teach one or more categories in STEM other than computing

Because the process of reading each abstract does not rely on search terms or automation,
the search has been limited to a range of three full calendar years, 2014–2016, which encompass
the reporting of activities just prior to the announcement of major U.S. government funding for
pre-college computing education. For the venues in that time, there were 2566 computing articles and
3351 STEM articles published, resulting in 5917 articles (as shown in the PRISMA chart in Figure 1).
A spreadsheet was created so that each row of the spreadsheet represented an article published in each
of the venues for the years 2014–2016 inclusive. For each article, relevant bibliographic information
was captured (e.g., title, author, venue, page numbers) including a hyperlink to the article for viewing.
Most importantly, the article abstract was captured for each article as a key part of the first phase of
this analysis.

The inclusion of an article for the final thorough review was a two-phase process. The first phase
involved two independent coders reading each abstract and coding the article as relevant or not to
the review. Relevance was determined by each coder by rating the information in the abstract against
the criterion above. After the two coders independently coded the article abstracts, their results were
compared and discrepancies were resolved through discussion. Inter-rater reliability on the coding
of the abstracts for computing articles was 96.5% and for STEM articles was 96.4%. At this point,
all identified articles (419) were moved onto the next stage of the process. The reading of the abstracts
(or screening as indicated in Figure 1) eliminated 5,498 articles.

2.3. Data Collection Process

The next stage involved a careful read of the 419 included articles to extract data for the previously
identified program elements. The process that determined the program elements is described more
fully in [16]; to summarize, a random subset of 10 articles were read and notes were created about the
types of information the articles reported about the research studies. After the initial set of articles were
read, a set of 13 article/study characteristics and 24 program elements were created that represented
the type of information that was being reported by the studies. Table 3 gives the list of article/study
characteristics while Table 4 gives a listing of the program elements.

Table 3. Research/study characteristics coded during the literature review.

Characteristics Codes

Type of article Research article, experience report, literature review
Focus area Activity, curriculum, evaluation instrument, professional development
Basic study design Cross-sectional, longitudinal, meta-study, retrospective, not applicable
Research approach Mixed methods, qualitative, quantitative, unspecified
Research questions/hypotheses Actual questions/hypotheses recorded
Experience Report summary Actual text of summary recorded
Time period for study Actual amount of time recorded
Analysis based on gender Yes/no
Analysis based on race/ethnicity Yes/no
Analysis based on socioeconomic status Yes/no
What was measured Freeform text about what was evaluated

Measurement frequency Longitudinal, mid-intervention, post-intervention, pre-intervention,
retrospective (can code to more than one)

Measurement type Freeform text
Instrument name Freeform text
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Table 4. Program elements coded during the literature review (all freeform text).

Student Demographics Instructor Demographics Activity Components

Number of participants
Age
Grade level
Gender
Race/ethnicity
Socioeconomic status
Disability data
Prior education and experience
Location

Who was the instructor (e.g., researcher,
classroom teacher)
Number of instructors
Gender
Race/ethnicity
Prior experience of instructors

Type of activity (e.g., camp, field trip, workshop)
Learning objectives
Required or elective
Curriculum used
Teaching method (lecture, lab, PBL)
Tool/language used
When activity was offered (camp, class)
Duration of activity, including contact hours
Average number of students per session (if
multiple sessions)

As the researchers progressed through the reading of each of the candidate articles, 29 computing
articles and 48 STEM articles were removed from further analysis because upon reading the articles,
they did not provide any formal evaluation or data about the intervention described. The articles may
have fulfilled many or all of the other criteria (pre-college and outside formal curriculum), but did not
present evidence of assessment or efficacy. These articles simply described the educational process
or intervention.

After these articles were removed, 199 computing articles and 143 STEM articles were analyzed
and the program elements were recorded. Both reserachers participated in the coding process. For the
computing articles, a two-level review system was adopted. An initial coder categorized the elements
from the articles listed in Tables 3 and 4, and a second coder verified those categorizations. Roles were
reversed frequently and discrepancies were discussed throughout the process. It is important to note
that every attempt was made to capture the information as the authors published it and to not infer or
interpret the information given in the articles. For this review, investigators or article authors were not
contacted to provide missing information. The data for the STEM articles were coded by one of the
researchers based on experience of coding the data in the computing articles. The coded data for the
computing articles are housed on https://csedresearch.org [26]. The coded data for STEM articles are
available from the authors upon request.

2.4. Synthesis of Results, Study Bias, Limitations

For this review, only descriptive statistics were calculated and reported. Counts and percentages
of the data recorded are reported, but no further analysis of the data was conducted. Issues of bias of
individual studies were not considered by this review. No codes were assigned to articles about the
discussion of limitations or bias of the intervention and/or evaluation. However, it is recognized that
this may be an interesting factor to look at in the future.

In terms of the aggregate bias for the entire study, there is a selection bias present in terms of the
venues that have been chosen. For the computing venues, the set of venues was determined based on
researcher experience as active members in this research community, previously published literature
reviews in computing education on this topic, and information gathered from a focus group [13,14,27].
There may be other venues publishing computing education research that would be relevant to
this search.

For the STEM venues, it is outside the researchers’ domain of expertise and, thus, the search
began using another literature review published in a highly respected venue (Proceedings of the
National Academy of Science) to guide the identification of appropriate venues [24]. From there,
the venues were narrowed down to those focused in the pre-college domain and then a systematic
sampling was conducted to create a more even distribution of the STEM disciplines. This process
may have introduced bias into the sample. However, no additional venues were included in the
set as the reserachers did not feel they had the expertise to judge the quality of the venue in the
STEM domain. There may be other venues that publish STEM education-related articles that could
be considered in this literature review. One example that was brought up during the review process

https://csedresearch.org
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was the American Society of Engineering Education (ASEE) which has an associated conference
about topics in engineering education. There may be other additional venues not considered on the
STEM side.

In terms of other larger systemic bias of the sample studied and the overall analysis, care was
taken to report the data collected based on what the authors of the articles reported. Success of
interventions was not considered, but rather whether or not the authors reported certain information
about their study and participants. Thus, it is believed that the risk of bias in the recording of the
data was low. There was no coding for impact on the academic achievement of the participants of
the studies.

3. Results

This section will present the results of the analyses of the comparison of the data extracted
from the articles considered. This corresponds to step 4, Summarize the Results, of the Khan, et al.,
framework [22] that is being followed for this systematic literature review.

3.1. Report Type

Table 5 shows the report type for each article analyzed. Articles were coded as research, experience
report, or literature review. An experience report is a common format in computing education
conferences and contains information about an educational intervention and reports about its success
or failure, but does not report the results of an actual research study. For computing articles, there is
almost an even split between the number of articles that qualify as experience reports versus those
that qualify as pure research. However, STEM articles are dominated by research reports. This is most
likely due to the nature of the venues for the two categories of articles. For computing education
conferences, experience reports are considered valuable and important, and are encouraged, accepted
and presented at a similar rate as research articles. Journals in computing education tend to be focused
on research articles. Because there was a mix of conference and journal venues, there is almost an even
split of those types. For the STEM disciplines, however, the percentage is heavily skewed with journal
venues which again accept and publish mostly research articles.

Table 5. Computing vs. STEM articles by report type.

Report Type Computing 1 (n = 199) STEM 1 (n = 143)

Research 98 (49%) 126 (88%)
Experience Report 97 (49%) 16 (11%)
Literature Review 4 (2%) 1 (1%)

1 Data reported as number of articles and % of the category.

3.2. Study Characteristics

In this section, the characteristics of the studies described within the articles are reported upon.
Information about the basic study design, research approach, research questions, duration of the study,
types of comparative analyses, and evaluation are presented in the subsections.

3.2.1. What Is Being Studied

The type of educational intervention being studied is broken up into four main categories: activity,
curriculum, evaluation instruments, and professional development. Professional development is
any intervention designed specifically for teachers, either in-service or pre-service, generally for the
purposes of training. Articles that report on the design and validation of evaluation instruments
related to pre-college interventions are given the code evaluation instruments. The code curriculum
is for those articles that discuss either the impact of the implementation of national curriculum or
state curriculum standards; or localized curriculum efforts that span more than one activity, lesson,
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or unit. All other articles are coded as activity. Table 6 gives a breakdown of each type of activity for
computing and STEM articles. Literature reviews were not included in this analysis. The data show
that for computing, the main focus of 85% of the articles is the activities and curriculum, almost evenly
split. This is not the case for STEM that is 83% focused on activities.

Table 6. Computing vs. STEM articles by type of intervention.

Focus Area Computing 1 (n = 195) STEM 1 (n = 142)

Activity 87 (45%) 119 (83%)
Curriculum 78 (40%) 14 (10%)

Evaluation Instrument 6 (3%) 1 (1%)
Professional Development 24 (12%) 8 (6%)

1 Data reported as number of articles and % of the category.

3.2.2. Basic Study Design

Table 7 shows the categorized basic study design for each article. The studies described in each
article were coded as cross-sectional, longitudinal, meta-study, retrospective, or not applicable. While it is
not always the case that experience reports have a systematic study included in the article, many of them
fall in line with the same study design characteristics as research articles. Some experience reports talk
about a single intervention (cross-sectional), while others discuss an intervention over time and how it has
evolved (longitudinal). Literature reviews were not included in this analysis. For some articles, it is not
clear which of the two categories are being discussed and not applicable has been coded. When comparing
computing to STEM, there is a similar pattern of distribution of the basic study design with cross-sectional
making up a large majority of the studies. While the number of longitudinal studies found is similar
between the groups, STEM has a slight lead when considered as a percentage of the whole.

Table 7. Computing vs. STEM articles by basic study design.

Study Design Computing 1 (n = 195) STEM 1 (n = 142)

Cross-sectional 152 (78%) 123 (87%)
Longitudinal 18 (9%) 19 (13%)
Meta-study 3 (2%) 0 (0%)

Retrospective 12 (6%) 0 (0%)
Not applicable 10 (5%) 0 (0%)

1 Data reported as number of articles and % of the category.

3.2.3. Time Period for Longitudinal Studies

For each article that was coded as research and coded as longitudinal for its basic study design,
the duration of the study as stated in the article was recorded. For the computing articles, the duration
of the longitudinal study was reported in the range of one semester up to 10 years. The average
duration of the longitudinal computing studies was computed to be two years. For STEM studies,
the study duration was in the range of one year to 10 years and the average study duration was
3.36 years. The ranges for these two groups are arguably not different, but the average length of study
is slightly higher for STEM studies.

3.2.4. Research Approach

For each article that was coded as research, the research approach was coded when described in
the article. The codes used were quantitative, qualitative, mixed methods, or unspecified. The results
of the coding are presented in Table 8 and show that the computing articles are actually a majority of
non-quantitative approaches with 29% using qualitative research techniques and 41% using a mixed
methods approach. Only 27% of the computing articles describe studies that used strictly quantitative
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methods. For the STEM articles, it is the opposite with 50% using quantitative techniques and only
20% using a qualitative approach, with 29% using a mixed methods approach.

Table 8. Computing vs. STEM articles by research approach.

Research Approach Computing 1 (n = 102) STEM 1 (n = 126)

Quantitative 28 (27%) 63 (50%)
Qualitative 30 (29%) 25 (20%)

Mixed Methods 42 (41%) 36 (29%)
Unspecified 2 (2%) 2 (1%)

1 Data reported as number of articles and % of the category.

3.2.5. Research Questions

For each article that was coded as research, whether or not the article presented its research
questions or research hypotheses was recorded. This was a binary coding and the results of the coding
are presented in Table 9 and show that computing articles present their research questions and/or
hypotheses more often than the STEM articles and are reporting the research questions 80% of the
time, compared to only 63% of the time for STEM articles.

Table 9. Computing vs. STEM articles stating research question(s).

Research Question(s) Stated Computing 1 (n = 102) STEM 1 (n = 126)

Yes 82 (80%) 79 (63%)
No 20 (20%) 47 (37%)

1 Data reported as number of articles and % of the category.

Digging deeper into this data shows that for computing, those articles that did not report a
research question were 20% qualitative studies, 30% quantitative studies, and 50% mixed methods
studies. For STEM, articles that did not state research questions were 19% qualitative, 62% quantitative,
and 19% mixed methods studies. Based on this analysis, there does not seem to be a pattern related to
the type of research design and the reporting of research questions.

3.2.6. Analysis Based on Race, Gender, or Socioeconomic Status

For each article, three independent, binary codings were produced to answer the question of whether
or not the article presented analyses based on differences in race, gender, and/or socioeconomic status.
All articles were included in this analysis since many experience reports present either anecdotal data
or observations about differences between these demographic groups. The results of the coding are
presented in Table 10 and show that the analysis of these demographics of participants is more common
in the computing articles than in the STEM articles. Literature reviews were not included in this analysis.

Table 10. Computing vs. STEM articles including analysis of participants’ race, gender, or socioeconomic status.

Analysis Computing 1 (n = 195) STEM 1 (n = 142)

Race/Ethnicity 35 (17%) 5 (3%)
Gender 59 (28%) 14 (10%)

Socioeconomic Status 19 (9%) 3 (2%)
1 Data reported as number of articles and % of the category.

Digging a little deeper, articles that did multiple analyses were examined (i.e., independent
analysis on more than one of the categories). For STEM articles, only six articles did multiple analyses,
but each of those articles only looked at two of the three demographic characteristics. For computing,
24 articles did analyses on two categories, and 10 articles looked at all three. The data show that
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interventions affecting those of a different gender, race/ethnicity, and/or socioeconomic status are a
bigger part of the discussion in computing than in STEM.

3.2.7. Evaluation

For each research article, information about the evaluation methods and instruments was recorded.
Appropriate evaluation is an area that has been explored by the researchers in the context of this same
set of data and discussed in greater detail than presented here [28,29]. How and what was assessed
across computing and STEM articles was compared.

The freeform text for what was measured was converted into a binary code for whether or not
that information was stated in the article. For “how it was measured”, a yes was recorded if the
article gave any information about measurement frequency, measurement type, or instrument used.
Literature review articles were not in this part of the analysis, but all research and experience reports
were included.

It was found that 182 out of 195 computing articles (93%) did specify in some way what the study
intended to measure. Comparing research versus experience reports, 87 out of 97 experience reports
(90%) specified what they intended to measure, and 96 out of 98 research reports (98%) made the same
specification. It was found that 136 out of the 142 STEM articles (96%) specified what they intended to
measure. Looking into the breakdown of research vs. experience reports shows that for experience
reports, 13 out of 16 articles (81%) reported this information and 122 out of 126 research articles (97%)
reported this information. Overall, the rates of reporting of this information are similar for computing
and STEM.

For specifications for how it was measured, again, 182 out of 195 (93%) computing articles specified
at least one of measurement frequency, measurement type, or instrument used for measurement.
The breakdown for experience reports vs. research reports was the same as for the above paragraph
on “what was measured”. It was found that 136 out of 142 STEM (96%) articles specified at least one of
measurement frequency, measurement type, or instrument used for measurement. The breakdown
for experience reports vs. research reports was that 14 out of 16 experience reports (88%) gave this
information and 121 out of 126 research articles (96%) gave this information. So once again, computing
and STEM articles are reporting this information at similar rates.

3.3. Study Participants

In this section, the results of the coding of information about the participants in the study as
reported by the articles is presented. Information about number of participants, participants’ age,
grade/level in school, gender, race and/or ethnicity, socioeconomic status, location, and disabilities
are presented in the subsections.

3.3.1. Number of Study Participants

For each article, the number of participants as reported by the authors was recorded. Literature
reviews are excluded from this analysis. For research articles, 27 computing articles (28%) and 13 STEM
articles (10%) did not report the number of participants of the study. Therefore, the rate of non-report is
almost three times as often for computing as STEM articles.

For experience reports, 39 computing articles (40%) and seven STEM articles (44%) did not report
the number of participants in the educational interventions described. The rates of non-report are
much higher in experience reports.

Figure 2 presents the data about the actual number of participants as a graph of the number of
participants (in ranges) as a percentage of the overall. The numbers in parentheses are the actual
number of articles to report the data. For this analysis, both research and experience reports were
included. There is a great deal of similarity between the number of participants reported in studies in
STEM articles and computing articles and the number of studies in each category reflects that. It is
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important to note that the ranges represented in the graph are not of equal size and reflect somewhat
natural breaks and jumps in the number of participants.
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3.3.2. Age and Year/Grade in School

The age as well as grade level of the study participants were recorded as reported by each article.
For this analysis, research and experience reports were included, but those that were categorized as
professional development were excluded.

The grade/year in school was converted to the U.S. system for purposes of reporting. Non-U.S.
grade levels are recorded as listed by the authors; they were then converted to the U.S. system by
looking up their equivalents using internet searches.

Table 11 shows the results of this coding for computing and STEM. The demographic most
frequently reported was grade level, with 43% of computing articles and 62% of STEM articles reporting.
The same percentage (22%) of computing and STEM articles reported both age and grade level.

Table 11. Computing vs. STEM reporting age and grade level of participants.

Reporting Computing 1 (n = 171) STEM 1 (n = 134)

Age only 30 (18%) 11 (8%)
Grade Level only 73 (43%) 82 (62%)

Both age and grade level 38 (22%) 30 (22%)
Neither age or grade level 30 (18%) 10 (7%)

1 Data reported as number of articles and % of the category.

However, the percentage of computing articles reporting neither piece of data is twice as high as
the STEM articles. Of the computing articles that are reporting no information on age or grade level,
only nine of the 30 are experience reports; so there are 21 research articles not reporting this information
about the study participants. Only three out of 10 non-reporting STEM articles are experience reports;
so even in STEM, seven research articles are not reporting this information.

Table 12 shows the number of articles reporting educational activities aimed at a specific grade
level group. The data are grouped into common groupings for the U.S. system, Pre-K (before required
formal schooling begins at age 5), K–4 (roughly ages 5 to 9 or 10), 5–8 (often called middle school, ages
10 or 11 to 13 or 14), and 9–12 (commonly called high school, ages 14 or 15 to 17 or 18). Articles could
have been coded into more than one category if the study participants bridged the boundaries of these
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groups. At least one study reported participants from Pre-K to 12th grade. For computing, the largest
percentage of interventions is aimed at grades 5–8, followed closely by interventions for grades 9–12.
However in STEM, the largest percentage of interventions target grades 9–12, followed by grades 5–8.

Table 12. Computing vs. STEM reporting grade levels of participants.

Grade Level Computing 1 (n = 111) STEM 1 (n = 112)

Pre-K (before formal schooling) 3 (3%) 1 (1%)
Kindergarten–4th grade (ages 5 to 9 or 10) 31 (28%) 27 (24%)

5th grade–8th grade (ages 9 or 10 through 13 or 14) 69 (62%) 51 (46%)
9th grade–12th grade (age 13 or 14 through 17 or 18) 61 (55%) 65 (58%)

1 Data reported as number of articles and % of the category.

3.3.3. Gender

Information about the gender of the participants as reported by the authors was recorded. Looking
only at research and experience reports that did not discuss professional development, in computing,
53% reported on the gender breakdown of the participants. For STEM, 49% reported on the gender
breakdown of the participants.

Looking at research studies that reported results comparing gender, 30 out of 34 computing articles
(88%) and 13 out of 14 STEM articles (93%) gave a detailed gender breakdown of the participants.

3.3.4. Race and/or Ethnicity

Information about the race/ethnicity of the participants as reported by the authors was recorded.
Looking only at research and experience reports that did not discuss professional development,
in computing, 25% reported on the race and/or ethnicity of participants. For STEM, 34% reported on
the race and/or ethnicity breakdown of the participants.

Looking at research studies that reported results comparing race/ethnicity, 14 out of 17 computing
articles (82%) and four out of five STEM articles (80%) gave a detailed race and/or ethnicity breakdown
of the participants.

3.3.5. Socioeconomic Status

Information about the socioeconomic of the participants as reported by the authors was recorded.
Looking only at research and experience reports that did not discuss professional development,
in computing, 14% reported on the socioeconomic status of the participants. For STEM, 29% reported
on the socioeconomic status of the participants.

Looking at research studies that reported results comparing socioeconomic status, four out of five
computing articles (80%) and two out of three STEM articles (67%) gave a detailed breakdown of the
socioeconomic status of the participants.

3.3.6. Disabilities

For each article, a binary code was produced as to whether or not the article mentions students
with disabilities or accommodations for students with disabilities. It should be noted that these
are, in fact, vastly different concerns, but for the purposes of this literature review, the lack of
discussion of disability found in either set of articles did not seem to warrant further categorization.
For computing, only two articles mention anything about the disability of the participants (1% of the
research/experience articles that are not professional development). For STEM, five articles mention
disability status (4% of the research/experience reports that are not professional development).

3.3.7. Participant Demographic reporting

Table 13 summarizes the information presented in Section 3.3.1–Section 3.3.6 in a single table.
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Table 13. Computing vs. STEM participant demographics reporting frequency.

Participant Demographic Computing 1 (n = 111) STEM 1 (n = 134)

Age/grade level of participants 141 (82%) 124 (93%)
Gender of participants 91 (53%) 66 (49%)

Race and/or ethnicity of participants 43 (25%) 45 (34%)
Socioeconomic status of participants 24 (14%) 39 (29%)

Disability information about participants 2 (1%) 5 (4%)
1 Data reported as number of articles and % of the category.

3.4. Additional Study Information

In this section, the results of the coding of additional information about the study/intervention
as reported by the articles is presented. As described in Table 4, many different pieces of data about
the instructors of the intervention and about the activity itself were recorded. The analysis for this
section will focus on much of this data in aggregate. In particular, the focus is on the location of
where the intervention/study took place, reporting about instructor demographics and reporting
about activity demographics.

3.4.1. Location of Intervention/Activity

For each article, the location of the study was recorded when presented as part of the description of
the study. The location of the intervention/activity was not assumed based on the location/institution
of the authors of the article. For this analysis, literature review articles were removed. For computing,
126 out of 195 articles (65%) specified where the study/intervention took place. For STEM, 113 out of
142 articles (80%) specified where the study/intervention took place.

For both computing and STEM, 60% of the studies took place inside the U.S. No other country
had more than 5% of the studies from either computing or STEM. There were 34 different countries
represented in the computing articles and 29 different countries represented in the STEM articles.
Countries from all continents except Antarctica were represented in the articles. There were two STEM
articles that did give location information but it was not specific enough to a country. One study talked
about a “town in South America” and another discussed that the participants were from 31 countries,
but did not give a listing of those countries.

3.4.2. Instructor/Teacher Demographics

For each article, information about the teacher/instructor/leader of the intervention or activity
was captured for the following demographic information: who the instructor was (i.e., classroom
teacher, graduate student), number of instructors, prior experience of instructor in the teaching subject
matter, gender of instructor, and race/ethnicity information of instructor. For this analysis, only articles
that focused on an activity or professional development were considered because those are the types
of articles that would be best suited to talk about an instructor.

The number of articles that gave any of the above information is at most 27% for computing articles,
but 55% for STEM articles. Table 14 shows the breakdown of how often instructor demographics
were discussed.

Table 14. Computing vs. STEM reporting instructor demographics.

Instructor Demographic Computing 1 (n = 111) STEM 1 (n = 120)

Who instructed/led intervention 30 (27%) 66 (55%)
Instructor gender 12 (11%) 10 (8%)

Instructure race/ethnicity 3 (3%) 3 (2%)
Number of instructors 30 (27%) 48 (40%)

Prior experience of instructor 16 (14%) 23 (19%)
1 Data reported as number of articles and % of the category.
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3.4.3. Activity/Intervention Duration

In this literature review, information was recorded about the activities/interventions as described
in the articles. Table 4 describes the program elements that were recorded for activity demographics.
For this analysis, the focus is on the following data:

• Type of activity (e.g., informal classroom activity, formal classroom activity/curriculum)
• Curriculum used
• Tools/Language used
• Delivery method (e.g., lab, lecture, project-based, team-based)
• Learning objectives (or goals) of the intervention
• Duration of the intervention

Freeform text entries were coded into binary yes/no entries for this analysis. Only articles that
described activities or professional development are included. Articles that describe curriculum are
not included. Table 15 provides a summary of these results. For computing, a high percentage of
articles identify the type of activity that is being conducted (84%) as well as the curriculum and/or
tools/languages used (87%). Computing articles do not report learning objectives for the activities
at a high rate, with only 18% of the articles reporting learning objectives. However, expanding the
definition of learning objective to include a statement about the general goals for the activity that may
or may not be learning objectives, the number of articles reporting that information is 84 and removing
for duplication, 92 out of 111 articles (83%) report either or both pieces of this information.

Table 15. Computing vs. STEM reporting activity demographics.

Activity Demographic Computing 1 (n = 111) STEM 1 (n = 120)

Type of activity 93 (84%) 103 (86%)
Curriculum, tools, language used 97 (87%) 64 (53%)
Method of delivery/instruction 69 (62%) 100 (83%)

Learning objectives 20 (18%) 9 (8%)
Duration 67 (60%) 86 (72%)

1 Data reported as number of articles and % of the category.

For STEM articles, a high percentage of articles identify the type of activity that is being conducted
(86%), but the curriculum and/or tools/languages used are reported by only 53% of the articles. STEM
articles are also less likely to contain learning objectives for the activities, with only 8% of the articles
reporting learning objectives. However, if the definition is expanded to include any statement about
the general goals for the activity that may or may not be learning objectives, the number of articles
reporting that information is 47 and, removing for duplication, 43 out of 120 articles (36%) report
either or both pieces of this information (36%). STEM articles still report less of this information than
computing. STEM articles, however, report more frequently on the method of instruction for the
activities at 83% compared to at 62% of computing articles reporting.

4. Discussion

The last step of the literature review framework, Step 5, defined in [22], is to interpret the findings.
This section discusses and interprets the findings of this literature review and the comparison of
information reported within computing and STEM articles.

In response to the research questions, R1 was concerned with describing what data were
collected/reported in computing education. R2 was similar in nature, but with a focus on closely related
STEM fields. The third research question, R3, was concerned with the similarities and differences in
the reporting between these two groups.
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4.1. Techniques for Data Collection and Reporting in Computing versus STEM

To address the first research question, a majority of the STEM fields are using research approaches
and styles similar to computing. A majority of the STEM studies are cross-sectional and more heavily
skewed towards quantitative methods as opposed to computing. Because of the predominance of
quantitative methods, the number of participants was analyzed to see if the studies being reported
in STEM articles were of much larger size than those in computing articles. Looking at the reported
data (see Figure 2), there are no large differences, save for a slightly higher percentage of STEM studies
that have participants in the 50–99 range. In terms of studies with greater than 100 participants,
the percentages are nearly identical in all categories. Therefore, the use of quantitative methods
is not directly influenced by the number of participants in the study. So, a key difference in the
techniques is a stronger reliance on quantitative techniques for STEM articles, irrespective of the
number of participants.

Based on previous work [13,14], it was hypothesized that in the more established STEM disciplines,
a greater reliance on longitudinal studies was present. Unfortunately, that was not the case in this
review with only 19 articles (13%) reporting on longitudinal studies. The article number is almost
equal to the computing articles found (18), even if the percentages are not the same. Perhaps a key
difference in the STEM articles is that the average length of the longitudinal studies reported upon is
longer by over a full year. However, the maximum study duration is 10 years in both disciplines in
these articles and this seems about correct. If a student participates in an activity around age 10 (which
is where a significant proportion of activities seem to be targeted), then the study follows that student
into a college/university. So, in the case of longitudinal work, there was not significant differences in
duration or vastly different techniques employed found in this literature review.

One area where computing is doing something that did not appear in STEM disciplines is
retrospective studies. Six percent (6%) of the studies in the computing literature were categorized
as retrospective, or asking participants to look back on events that happened previously and answer
questions about them at the current time. Often times these studies are used to determine how an
event or activity influenced where the participant is in the present time. These types of studies differ
from longitudinal studies in that the participants from an intervention are not tracked over time by
the researchers, but rather participants are asked about something they may have experienced from a
different group of researchers. There was no evidence of these types of studies in the STEM articles.

Another area in which computing is different to STEM is in the comparative analysis of the
participants based on certain demographic characteristics (i.e., race, gender, socioeconomic status).
Computing studies are twice to five times as likely to compare participants grouped by demographic
characteristics as STEM studies. Broadening participation in computing has been a long-standing effort
in the computing community, heavily supported and funded by government grants and programs [30],
which could explain some of this difference.

In terms of age/grade level studied, both groups presented studies focused primarily on middle
and high school (grades 5–12), with around a quarter of the studies (28% for computing, 24% for STEM)
looking at issues in grades K–4, and very few studies (3% or less for both groups) looking at students
in the pre-kindergarten years. So, from this perspective, all the disciplines are focusing their efforts on
students in the upper grade levels of primary and secondary education.

4.2. Similarities and Differences in Reporting for Computing and STEM

Turning to the second research question, identifying the similarities and differences in reporting,
the two groups have strengths and weaknesses in different areas—some of them mutually strong
or weak. Table 16 summarizes the differences in reporting over the various categories analyzed by
this literature review. What is important to remember, however, is that even when computing or
STEM reports more frequently, or they are comparable, none of the categories was reporting the
information 100% of the time and for many of the categories, reporting was actually very low. Since
this study was borne out of a desire to improve replicability of educational research, it is important
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for both the computing education research community and STEM education research community
and publication venues to work to improve overall reporting of the relevant information about their
research studies [16,21].

Table 16. Categories of reporting and which group (computing or STEM) had more reporting.

Computing STEM Comparable

Research questions Number of study participants Evaluation

Comparison on gender, race/ethnicity,
socioeconomic status

Participant age/grade level Participant gender
Participant socioeconomic status Participant race/ethnicity
Disability Activity demographics
Location reporting
Instructor demographics

4.3. More Frequent Reporting from Computing

4.3.1. Research Questions

It is vitally important for research articles to report their research questions in a manner which is
clear and easily distinguishable in the text. Computing articles contain this information in 80% of the
articles, but STEM only has a report rate of 63%.

4.3.2. Comparisons Based on Demographic Characteristics

Computing has more articles reporting on the comparisons of participants based on demographic
groups of gender (28% vs. 10%), race/ethnicity (17% vs. 3%), and socioeconomic status (9% vs. 2%).
While this is not a necessary feature of a study, it is interesting to note that computing simply is
studying the impact of the interventions

4.4. More Frequent Reporting from STEM

4.4.1. Number of Participants

STEM reported the number of participants more frequently in research studies, with only 10%
of the articles categorized as research not reporting. For computing, that number is 28% of research
articles not reporting number of participants. In either case, it could be argued that this number should
be 0% and that all research articles should report the number of participants in the study.

Computing has a significantly larger proportion of experience reports as compared to STEM (49%
to 11%), and actually reports at a slightly higher rate in this category (60% reporting for computing,
56% reporting for STEM). For experience reports, it could be argued that reporting the number of
participants is not required in the reporting because the article does not present a formal research study.
However, this information plays an important role in a reader’s understanding of the intervention and
the subsequent conclusions drawn. Having information about class size or how many students total
participated in an activity helps the reader to understand how applicable the observations might be in
their circumstance.

Looking at the data for research and experience reports in aggregate, STEM reports more frequently,
with 91% of STEM articles containing such data (research or experience reporting), while computing has
only 63% of articles reporting the number of participants.

4.4.2. Age, Grade, Level of Participants

Participant age and/or grade level in school was not reported by 7% of the STEM articles
studied, and not reported by 18% of the computing articles. This information is extremely important
to understand the context of the classroom the intervention takes place in. The environment of
a secondary school is very different from that of early elementary/primary school. Furthermore,
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terminology is problematic when discussing grade and level in school due to the vast differences
in educational systems and names. Even within the U.S., terms such as “middle school” and “high
school” can mean different things to different school systems. When possible, it is always best to
couple the reporting with ages of participants or typical age ranges of students in that level if explicit
age data are not collected. Doing so will help all readers, especially those from regions in which the
educational system is different to that studied by the researchers.

4.4.3. Socioeconomic Status

STEM articles were twice as likely to present information about participant socioeconomic status
than computing articles (29% vs. 14%). Most often, this was done at the school/community level,
which seems appropriate due to privacy concerns. Understanding the socioeconomic climate of where
the intervention takes place can provide important insight to how or why an intervention does or does
not work.

4.4.4. Disability Information

To say that STEM had more frequent reporting in this area hides the fact that at 4%, the reporting is
still poor. The fact that computing only talks about this issue 1% of the time is the only thing that gives
STEM the edge in this area. More work is needed in both areas to ensure that disability information
and accommodation information becomes part of the discussion in the pre-college research space.

4.4.5. Location Where the Invention Took Place

STEM reports location of intervention at a slightly higher rate than computing (80% to 65%). However,
looking at distribution of locations, the studies are still predominantly U.S. studies. The number of
additional countries represented is roughly the same for computing and STEM. This predominance of U.S.
studies could be the result of venue bias since only English-language venues were considered, bar the
results of [14], which expanded a literature review in computing to include many non-U.S.-based venues
did not show significant differences in the proportion of studies taking place outside the U.S.

4.4.6. Instructor Demographics

For the five instructor demographics studied, summarized in Table 14, STEM reported the
information at a higher rate (at times double the rate) in all but two instances, instructor gender
and instructor race/ethnicity, where computing reported at a 3% and 1% higher rate respectively.
In this case, STEM reports this information more frequently, particularly about who actually led the
intervention as part of the study. It may be the case that researchers assume that readers know that they
led the intervention or that a classroom teacher would lead the intervention as created by the researcher,
but this information should be stated so that readers understand the classroom environment.

4.5. Reporting Comparable Computing versus STEM

4.5.1. Evaluation

Both groups reported evaluation in terms of what they intended to measure equally well.
The analysis for this study is somewhat superficial in terms of evaluation. The use of validated
measures or rigor of evaluation protocol as described by the articles was not analyzed. Future work in
this area would be needed to examine more closely the use of validated instruments and other best
practice evaluation methods for the two groups.

4.5.2. Gender of Participants, Race/Ethnicity of Participants

Both groups reported on participant demographics in terms of gender and race/ethnicity with
about the same frequency, but the percentages were barely at 50% for gender and slightly more than
25% for race/ethnicity. While the demographic breakdown of the participants may not be germane
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to the research questions being studied, understanding the context of the classroom environment is
important to the understanding of the work. So being explicit about these demographic factors helps
to situate the intervention. Even if the demographic information is reported for the school/community
level, it helps create a picture of what the classroom looks like.

4.5.3. Activity Demographics

For the five activity demographics studied, summarized in Table 15, computing reports more
frequently for two of them, and STEM for three, but the differences in reporting are not as large as
in other categories, and thus this was classified as being done equally well on both sides. The one
area where computing is reporting more often is in the area of curriculum and tools/languages used.
This is possibly an artifact of the discipline. Computing is incredibly focused on the technology and/or
programming language used for instruction, so it is often discussed more often than the actual way
in which the technology/tool/language is being presented, which computing is reporting less often.
This could also be an artifact of the age of the discipline. As an example, mathematics decided a very
long time ago to use Arabic numerals as opposed to Roman numerals (or others) as their language of
expression. Computing has yet to adopt a universal language of expression for programming and is
likely decades away from doing so, if it will happen at all. Therefore, there is a very important need to
know about the language/tool when discussing these interventions.

4.6. Guides for Improving Reporting

This systematic literature review shows that there is room for improvement in the reporting
of educational research in both computing and STEM education. Resources have been created
for computing education researchers that can apply equally well to STEM education researchers.
The first, a guide for reporting program elements (https://csedresearch.org/guides/) [31], is based on
a comprehensive examination of 297 articles in computing education and was derived from noting the
gaps in reporting as described in [16].

To encourage researchers to report data more fully and consistently, a list of recommendations for
reporting on these interventions was also developed [16]. These recommendations have been reprinted
here as Figure 3.

The second, a guide for reviewers to consider when reviewing articles (https://csedresearch.org/
check-articles/) [32], was informed through the work in the initial design and creation of the site with
a focus group of potential users (computing education researchers, practitioners, and evaluators) [26].
Through the 10-week discussion period, one theme that emerged was how to assess the research
quality of the items being included in the repository and the discussions resulted in the following
framework [reprinted here as Table 17].

https://csedresearch.org/guides/
https://csedresearch.org/check-articles/
https://csedresearch.org/check-articles/
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Table 17. Checklist for research articles.

Purpose, Goals, Intent, Clarity: Do the authors . . .

• Make a case for why the reader should care about the problem?
• Provide their contact information for the activity/study organizer/instructor/designer?
• Clearly and explicitly state the research question(s) and hypothesis?
• Clearly state the study’s objectives, including articulating any learning outcomes?
• Use correct language related to educational researcher?
• Provide any definitions used that are crucial to the study?
• Specify the research question(s) the study sought to answer?

Study Design: Do the authors . . .

• Indicate the research methodology used and the rationale for that choice?
• Use an appropriate design related to its type of study?
• Describe the methodology in sufficient detail for another researcher to replicate the study?
• Describe the methodological framework (quantitative, qualitative, mixed methods) in terms of

educational research? (Qualitative: case studies, ethnography, longitudinal, etc.; Quantitative: (quasi)
experimental designs, survey, etc.)

• Describe any efforts to offset the novelty effect, Hawthorne effect, John Henry effect?
• Use and rigorously apply instruments appropriate to the research question?
• Describe and provide the instruments used within the study?
• Fully describe the setting for the study (location, classrooms, courses, schools)?
• Use an appropriate instrument to measure impact?
• Consider sample size and whether it is sufficient?

Activity/Intervention: Do the authors . . .

• Fully describe the intervention and/or activities?
• Explain how the activity is suitable to the targeted participant group (age/range/experience/etc.)?
• Describe the skill, knowledge, or disposition that was being targeted?
• Describe the length and frequency of the intervention (hours, days, months)?
• Describe who conducted the intervention, including qualifications?

Ethics: Do the authors . . .

• Disclose their International Review Board (IRB) approval process and methods to ensure participant
privacy, confidentiality, and protection?

• Disclose any costs/funding sources to conduct any aspect of the research/activity in order to assess
possible bias?

• Disclose whether or not participants or researchers receive monetary or gift incentives?
• Include researcher qualifications and how researcher bias has been mitigated?
• Declare any personal, organizational, or institutional biases?

Participants: Do the authors . . .

• Include participant demographic information, including age, grade range, gender, race/ethnicity,
socioeconomic status?

• Include number of participants in the study?
• Include recruitment process for participants (volunteer? required?)?
• Describe sampling technique used?

Data Analysis: Do the authors . . .

• Indicate the analysis methods and tools used and the rationale for those choices?
• Describe how the data analysis methods were appropriate for the design?
• Fully describe the analysis methods with sufficient detail for replication?
• For quantitative frameworks, describe all statistical tests used and a rationale for non-standard measures

used? Include or provide a link to the raw assessment data for others to verify/analyze? Distinguish
between correlation and causality?

• For qualitative frameworks, describe how the data were analyzed, how inter-rater reliability was
maintained, and provide researcher reflexivity statement?

Results: Do the authors . . .

• Provide a compelling argument (sample size, quantitative or qualitative analysis, etc.) for the significance
of its results?

• Describe the results of the study?
• Explore the implications of the results on research, policy, and practice?
• Describe how this research and/or results fit into the larger context of related research?
• Consider whether the results are appropriate for the scale of the intervention?
• Describe limitations of the study, including issues related to ability to generalize, sample size,

confounding variables, whether or not participants were randomized or not representative, with any
alternative hypothesis stated?

• Include data (sample size, statistical analysis, etc.) indicating its significance?



Educ. Sci. 2019, 9, 69 23 of 25

4.7. Threats to Validity

Section 2.4 acknowledges some of the threats to the validity of this study, particularly around
bias in sampling for the literature review. However, another important threat to the validity of this
work is human error, both in the information that was overlooked or missed in the extraction of data
from the articles as well as information that may have been misinterpreted. While every effort was
made to record the actual text from the articles as the data were being extracted, there were times
when the actual sentences needed to be summarized or rephrased to conform to the categories of data
being collected.

The data curated for the computing articles have undergone a data extraction as well as a data
verification process. The STEM articles underwent only a data extraction process with no secondary
review. However, the extraction was done by a senior researcher working on the project who developed
and coached others on the protocol, once again, to mitigate potential errors for this study.

In addition, the research team has a background in computing education and general education
techniques, but not a background in other STEM education research. It is possible that this lack of
knowledge could introduce interpretation error when extracting data from the STEM articles.

5. Conclusions

In order to improve the credibility of educational research in K–12 as well as undergraduate
STEM+C, it is imperative for educational researchers to carefully record and report participant
demographics as well as program elements of the intervention. This particular study was formed to
determine whether computing education is lagging behind other STEM disciplines in terms of the
accurate reporting of and study of these types of educational interventions at the pre-college level.

Overall, this comparative literature review answered a key question in terms of understanding
the differences in reporting in the computing and STEM literature. As such, the researchers considered
the possibility that other STEM disciplines may help understand how reporting demographic and
program data in computing education research compares and what can be improved. While this
review uncovered deficiencies on both sides, more often on the computing side, there were times when
computing had a higher level of reporting.

The results bring forward possible questions for future consideration including what mechanisms
can be employed to ensure more thorough reporting of these factors in research studies. Is there a way
to bring more recognition of the importance of these issues to the community? With more investment
in computing education in recent years, will a literature review 5 years from now still uncover the
same deficiencies in reporting?

By bringing these issues of reporting into the conversation, there may be a shift in the way
articles report on their experiments and findings. With stakeholders such as the U.S. National Science
Foundation starting to make a push for more replication and reproducibility, it is anticipated that any
such shift will lead to more utility in the research results and greater ability for others to replicate
studies, thereby adding credibility to the results. By so doing, best practices can be better formed
through an aggregation of higher integrity, empirical evidence.
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