Construction of a Taxonomy for Tools, Languages, and
Environments across Computing Education

Monica M. McGill
Knox College & CSEdResearch.org
Galesburg, IL, USA
monica@csedresearch.org

ABSTRACT

The sheer number of tools, languages, and environments (TLEs)
used in computing education has proliferated in the last few years
as more tools are developed to meet new demands of the growing
amount of K-12 computing education that has been undertaken.
However, there is little formalized language at either the K-12 or
post-secondary level that provides for a way to classify these TLEs
for discussing research and for classifying in databases.

In this research study, we step through a formal process for
building a taxonomy for TLEs. As part of the supporting research,
we first discuss the importance of taxonomies and classification
systems in computing education, provide a formal method for build-
ing a taxonomy, and provide working definitions of TLEs based on
previous literature. This is followed by a systematic literature re-
view using a widely-accepted methodology for finding articles that
have examined TLEs in primary, secondary, and post-secondary
computing education. This literature review focuses on studies that
looked at multiple TLEs and specifically attempted to classify or
categorize them. We then propose a new taxonomy for classifying
TLEs and provide definitions and samples for each category. This is
followed by a discussion of the next steps in vetting the taxonomy
and the challenges and issues that need to be considered when
evaluating it for classifying TLEs in computing education.

CCS CONCEPTS

« Social and professional topics — Computing education;
Computing education programs; Computer science educa-
tion.

KEYWORDS

Languages, tools, environments, K-12, primary, secondary, post-
secondary, computing, education, literature review, taxonomy, on-
tology, classification

ACM Reference Format:

Monica M. McGill and Adrienne Decker. 2020. Construction of a Taxonomy
for Tools, Languages, and Environments across Computing Education. In
Proceedings of the 2020 International Computing Education Research Confer-
ence (ICER 20), August 10-12, 2020, Virtual Event, New Zealand. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3372782.3406258

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICER °20, August 10-12, 2020, Virtual Event, New Zealand

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7092-9/20/08.

https://doi.org/10.1145/3372782.3406258

Adrienne Decker
University at Buffalo
Buffalo, NY, USA
adrienne@buffalo.edu

1 INTRODUCTION

As defined by Whittaker and Breininger, a taxonomy is “.. a con-
trolled vocabulary with each term having hierarchical (broader and
narrower) and equivalent (synonymous) relationships. Because of
its hierarchical nature, a taxonomy imposes a topical structure on
information.” [73, p. 2] One of the earliest, well-known and widely-
used taxonomies relates to the sciences. Linnaeus’s 18th century
taxonomy names, defines and classifies groups of organisms across
the biological life sciences [15], which remains as the basis for the
U.S. National Institutes of Health Taxonomy database [51]. Like-
wise, Dewey (1876) decimal classification for data also represents a
taxonomy that is still embedded in libraries today [20]. Ontologies,
closely related to taxonomies, provide "...a hierarchically structured
set of terms for describing a domain that can be used as a skeletal
foundation for a knowledge base" [67]. They can be used to define
"...the basic terms and relations comprising the vocabulary of a
topic area, as well as the rules for combining terms and relations to
define extensions to the vocabulary" [52, p. 2].

More recently, taxonomies have moved well beyond their initial
usage in biology and have been integrated across many disciplines,
such as user experience, e-commerce, marketing, and interactive
media [44, 69, 71]-essentially, digital data that are stored in a data-
base or represented in an interface and that requires a logical group-
ing. Taxonomies and other types of classifications of computing
education data have been studied over the last several decades
[31, 37, 39]. A subset of these studies have focused on tools, lan-
guages, and environments (TLEs), such as Singh (1990), Price et al.
(1993), Wright and Cockburn (2003), Kelleher and Pausch (2005),
and Gomez-Albarran (2005) [28, 35, 58, 64, 74].

The sheer number of TLEs used in K-12 computing education
has proliferated in the last few years as more tools are developed
to meet new demand [45]. However, as more are created, how we
refer to TLEs with similar characteristics have not been defined in a
systematic way nor have the few classifiers in use (e.g., block-based,
tangible computing, etc.) been examined closely to know if they
consider future expansion and adaptability as the field changes,
two key issues raised by Price et al. [58]. To explore this further,
for this study we adopted the following research questions:

e What taxonomies exist for TLES?
e What would a modern taxonomy of TLEs contain?

For the first phase of this study, we examine taxonomies that have
been created for TLEs in the past few decades through a systematic
literature review, followed by a proposed taxonomy of TLEs, replete
with definitions and examples. We provide here a summary of the
importance of taxonomies, a description of the methodology we
used to form the taxonomy, a working definition of TLEs for this

https://doi.org/10.1145/3372782.3406258
https://doi.org/10.1145/3372782.3406258

study, the Systematic Literature Review (SLR) for identifying past
literature for related taxonomies, and a summary of how we built
the taxonomy. This is followed by the proposed taxonomy and a
discussion. We then provide an overview of the next phase of this
study, reflecting on the need to gather evidence of the proposed
taxonomy’s validity throughout the broader computing education
research community.

2 TAXONOMY IMPORTANCE AND USAGE

In general, taxonomies are now heavily used in information man-
agement, due to their importance and usefulness for adding to
databases and keyword tagging to make information storage and
retrieval manageable and to present data hierarchically [72]. In
research, lack of common terminology can result in fragmentation
of a field with researchers using differing sets of terminology [22].
This has the potential of leading to a duplication of efforts, since
researchers searching by keywords using their own terminology
may be quite different than those in published articles. Taxonomies
can provide a way to mitigate these problems by mapping the field
so research studies share common vocabulary that is consistent and
persistent in the field, thereby preventing a proliferation of various
synonyms [5, 22]. Likewise, [16] (2003) believed classifications are
valuable "...to achieve preciseness and economy in making general-
izations," [16] while they can also be used to guide future research
[46].

Closer to education research and practice, several notable tax-
onomies exist, including Bloom’s and SOLO taxonomies for de-
scribing processes involved in cognition and learning [8, 9]. Bloom
believed that "...his taxonomy could serve, among other things,
to provide a common language of reference, defining educational
goals, and provide a panorama of educational possibilities" [37, p.
8]. These taxonomies have been widely researched and used within
computing education and, in part, they illustrate their importance
as Bloom anticipated [23, 27, 34, 38, 39, 70].

Taxonomies can provide a way to identify affordances, as well
as advantages and disadvantages of TLEs, lending themselves as a
framework for assessing whether a particular TLE is suitable to a
specific teaching scenario as well as evaluating and comparing TLEs
[10, 11, 49, p. 1222]. They can also be used to direct the design of
future digital systems by pinpointing gaps that could be potentially
met by new or enhanced systems [46].

Kelleher and Pausch’s (2005) reasons for building a taxonomy
of programming environments and languages are rooted in their
desire to identify the sociological factors that prevent students from
learning programming [35]. Their efforts were made in order to
identify which TLEs addressed barriers to learning, including me-
chanical barriers that place unnecessary cognitive load on learners,
as well as the gaps in these systems. Malmi et al. discuss several
classifications of tools, noting the need for structure in this area
and providing their own groupings and definitions of tools [41].

Finally, taxonomies "...enable the development of IS research
databases with high levels of user performance characteristics" [5,
p- 299]. In various ways, the taxonomies mentioned reflect on Lin-
naeus’s efforts of naming, defining, and then classifying groups of
items that have similar characteristics. Though all of these reasons

provided above are important, our primary motivations for under-
taking this research study is to enable the structuring of data using
agreed upon keywords within a large dataset for computer science
education researchers [5] and to update older taxonomies to reflect
modern TLEs currently infiltrating primary and secondary comput-
ing education. Our work is part of larger work similar to Kelleher
and Pausch [35] and reflects our efforts to determine where the
gaps are in meeting the needs of the CS for All community working
to promote effective CS learning across primary and secondary
education.

3 METHODOLOGY

Gavrilova et al. (2005) proposed an algorithm for the development
of an ontology, which are closely related to taxonomies. These
steps included developing a glossary, laddering, desintegration,
categorizing, and refining the ontology [24, p. 2]. Various forms
of taxonomies can be dynamically created from databases or sets
of data using tools that leverage natural language processing and
statistical clustering [72]. Datasets that lend themselves well to
auto-generated taxonomies are keyword focused and typically well-
defined, such as corporate documents that already have topics and
subtopics from which hierarchies can be formed. There are also
examples of taxonomies being created from keywords, such as in
Engineering Education Research [22]. Turning to steps for creating
a taxonomy for our study, we follow steps provided by Whittaker
and Breininger [73], who specify seven steps to creating a taxonomy
for managing knowledge:

(1) Determine requirements

(2) Identify concepts

(3) Develop draft taxonomy

(4) Review with users and subject matter experts
(5) Refine taxonomy

(6) Apply taxonomy to content

(7) Manage and maintain taxonomy

For the purposes of this phase of our research study, we explored
steps 1 through 3 of the Whittaker and Breininger framework to
develop a taxonomy for TLEs. These are described below with their
corresponding sections in this paper:

e Section 4: Identify the concepts by providing a broad defini-
tion of tools, languages, and environments

e Section 5: Develop requirements for this study via a sys-
tematic literature review (SLR) of existing taxonomies for
TLEs

o Section 6: Identify and define the concepts of the taxonomy
based on the results of the SLR

e Sections 7: Develop a draft taxonomy, including names, def-
initions, and examples of the targeted TLEs based on the
requirements and concepts

e Sections 8 & 9: Define next steps in gathering evidence of
validity and reliability of the taxonomy (including steps 4-7
above)

This methodology provided us with the necessary steps to exe-
cute in order to answer our research questions. Since the first two
steps are closely related, we chose to provide a working definition
for TLE:s first, then examine requirements.

4 WORKING DEFINITION OF TLES

Providing formal definitions of TLEs is a challenging task that
could warrant a separate SLR with many months of work and, at
its conclusion, may not prove useful to this task. In this section,
we loosely cover several definitions and then provide a working
definition for TLEs that we refer to throughout the rest of this study.

Al-Abri et al. (2017) define a tool as "...the instrument which is
necessary to complete the purpose of the task based on the method
applied” [2, p. 884]. In the context of computing education, Malmi
et al. focus on digital tools, forming them as software applications,
web applications providing some service, software frameworks, or
definition languages [41]. While Malmi et al. restrict their overview
of software tools to those that do not include physical computing or
other unplugged activities (like CS Unplugged), others include these
as tools per Al-Abri et al.. Horn and Bers (2019) explore the term tan-
gible computing as including digital manipulatives, representation
of computer code through the use of physical objects, those that
blend movement, action, and physical space through programming,
robots, and crafted materials like E-textiles [32]. They also provide
a broad classification, including smart block languages, tangible
demonstration languages, and externally compiled languages.

Though not limited to computing education, Deek and McHugh
(1999) defines programming environments, or what we often refer
to now as interactive development environments, as "...systems
used by programmers to develop and test programs" [19, p 133]
These environments are a collection of "...tools that can be used in
program construction, compilation, testing, and debugging: editors,
language compilers, pre-coded function libraries, linking loaders,
parsers, tracers, and debuggers" [19, p. 133].

With many tools, programming languages, and development
environments in computing education, it is easy to identify and
separate each. Python, for example, is a language. NotePad++, Sub-
lime, and Emacs are tools for editing code. However, an integrated
development environment (IDE) could support just one language,
with the language being inseparable from the IDE, such as Scratch,
making it impossible to break apart languages and environments
[30]. In computational thinking, unplugged activities and physical
manipulatives may be used and have shown to be effective [32].

Since there has not yet been a comprehensive definition that
captures all of the learning aids we have discovered that have been
included in research studies, we have chosen to use the phrase "tools,
languages,and environments" to "...broadly capture those formal
materials that have been studied in research studies or mentioned
in experience reports as part of the overall student experience"
which we have collected in ongoing research [45].

Materials is a term used to capture many forms of general media
(e.g. textbooks, wikis, and forums). These are sometimes the subject
of computer science education research or experience reports and
as such could be classified as a TLE. We are aware that identifying
products designed for primary and secondary education requires 1)
a broad definition of tools, languages, and environments that reflect
the rich set of past and current research and 2) be broad enough to
capture near-future aids used for learning computer science. We
also recognize that digital textbooks can incorporate editing and
run-time environments, which can further conflate any process
that attempts to separate these terms.

5 SYSTEMATIC LITERATURE REVIEW

To develop the requirements and answer our first research question,
it was necessary to consider the research and taxonomies that
have been previously published. We chose to conduct a systematic
literature review (SLR) in accordance with the Khan et al. framework
[36]. This five-step process includes:

e Step 1: Framing questions for a review
Step 2: Identifying relevant work

Step 3: Assessing the quality of studies
Step 4: Summarizing the evidence
Step 5: Interpreting the findings

For the remainder of this section, we provide an in-depth review
of our steps used in this SLR.

5.1 SLR Step 1: Framing questions for a review

We first established a free-form question based on the goals for
this research. The free-form question directly aligns with our first
research question, but with more clarity: What are the previously
established taxonomies and classifications of tools, languages, and
environments used in computing education research?

We then derived the structured questions from the free-form
question, breaking them apart into Khan et al.’s categories. Since
the framework is primarily for interventions rather than theories,
we modified that category to accommodate our needed analysis
work:

e Population: Computer science education researchers, with a
focus of K-12 CS education researchers

o Interventions or exposures: Reclassified as investigation into
tools, languages, and environments (TLEs) used in comput-
ing education

e Outcomes: a taxonomy, hierarchy, or classification of TLEs

o Study design: review articles that propose a grouping, classi-
fication, or hierarchy of TLEs, and/or an in-depth review of
available TLEs that produce (as a by-product) some grouping

For the study design, we were aware of articles that propose
taxonomies of TLEs. We were also aware through our previous
work that groupings and classifications may appear in articles,
though they were not the original intent of the research being
reported. Further, though we were particularly focused on TLEs for
K-12 CS education, there are relatively fewer TLEs and taxonomies
at this level. In addition, there is considerable overlap between TLEs
designed for late secondary and early post-secondary learners. For
these reasons, we included taxonomy work borne from all levels.

5.2 SLR Step 2: Identifying relevant work

For step 2 of the methodology, we established our selection crite-
ria a priori from our resesarch questions. We chose to search the
following publication venue libraries to make the search extensive:
ACM Digital Library (limited to the ACM Full-Text Collection),
IEEE Explore, and Google Scholar.

We established four search criteria to be executed across the
three libraries:

e Search 1: Education AND “Programming language” AND
(hierarchy OR classification OR taxonomy)

e Search 2: Education AND (Tools or languages or environ-
ments) AND (hierarchy OR classification OR taxonomy)

e Search 3: “computer science” AND education AND (hierar-
chy OR classification OR taxonomy)

e Search 4: Education AND (“Integrated Development Envi-
ronment” OR IDE) AND (hierarchy OR classification OR
taxonomy)

Our goal was to include the first 50 articles found in each search,
which would result in 600 articles to review (minus duplicates).
Upon conducting the four searches in the ACM Digital Library, we
discovered through analysis that the AND Boolean logic operator
did not appear to be working as is expected for a logic statement.
For example, a search of the first returned article in the fourth
search criteria, stripped down to simply Education AND "Integrated
Development Environment" AND Classification resulted in 268
results. However, when the first result returned was examined, the
word “Classification” did not appear in the article, inferring that
the AND operator is treated as the Boolean operator OR.

Since we were skeptical of these results, we performed the
searches on Google Scholar. After seeing that the results of the
first search criteria included articles from both ACM and IEEE pub-
lication venues, and seeing familiar and relevant articles (e.g. Kelle-
her and Pausch), we changed our strategy to only search Google
Scholar, but expanded the number of articles to the top 100 results
returned, which would then give us a total of 400 articles (minus
duplicates) to review.

We placed all articles in a Google spreadsheet so we could iden-
tify and remove duplicates. The titles and authors of the results
provided some assurance that they were falling into the scope of
our desired literature. The searches were conducted in March, 2020.
Of the 400 articles, 33 duplicates were found, leaving 367 articles. Of
these duplicates, none appeared in the results of all four searches,
but the following three appeared across three of the searches:

e Kelleher, C., & Pausch, R. (2005). Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers. ACM Computing
Surveys (CSUR), 37(2), 83-137.

e Rongas, T., Kaarna, A., & Kalviainen, H. (2004, August). Clas-
sification of computerized learning tools for introductory
programming courses: learning approach. In IEEE Interna-
tional Conference on Advanced Learning Technologies, 2004.
Proceedings. (pp. 678-680). IEEE.

e Tomei, L. A. (2005). Taxonomy for the technology domain.
In Taxonomy for the Technology Domain (pp. 89-108). IGI
Global.

This gave us additional assurance that we were collecting the data
that we intended.
After consideration, we determined that the inclusion criteria
for articles would be one or more of the following:
e Contained any discussion on tools, languages, or environ-
ments in the context of computing education
e Contained any discussion on the relevance or importance of
taxonomies in the context of computing education

Next, we went through each of the remaining 367 articles to

determine whether or not they met our inclusion criteria. As we
reviewed articles, it became clear that our second criteria was too

limiting. We then changed the criterion to "Contained any discus-
sion of taxonomies in the context of computing education" and
re-reviewed articles where necessary and applied the new crite-
rion to articles that were still under review. This broader criterion
would enable us to capture additional articles that might serve as
models of creating taxonomies while at the same time encompass
any articles that also created taxonomies of TLEs within computer
science education.

Since inter-rater and intra-rater reliability can change across
time [7], we adopted the following methodology to mitigate these
issues:

e We examined the first 75 articles together over a three-day
period to see if they met our search criteria, discussing any
discrepancies.

e We then examined a unique set of 25 articles independently,
for a total of 50 articles.

o After reviewing the articles independently, we met daily to
discuss and address any issues that arose during our inde-
pendent reviews.

e We then examined the next 10 articles together.

e We repeated the last three steps until all articles were re-
viewed.

Thus, we examined 115 together and 126 each independently.
By reviewing 10 articles together at regular daily intervals and
discussing any discrepancies in our work performed individually,
we were able to provide greater assurance that our method of
evaluating the articles against our inclusion criteria remained the
same. Of the 367 articles, we found 60 met the first criteria, 65 met
the second criteria, and 24 of these met both criteria, for a total of
77 articles remaining to be assessed in Step 3.

5.3 SLR Step 3: Assessing the quality of studies

For assessing the quality of the studies, we examined all remaining
77 articles more deeply to determine if their content contributed
to the building of a modern taxonomy and whether or not the
study was of high-quality. For heterogeneity and suitability, we
determined whether each article discussed taxonomies in relation to
TLEs. For quality, we examined the publication venue to determine
if it was of acceptable quality (e.g. ACM digital library, IEEE digital
library, or other journals or publication venues that have a formal
review process).

We examined 10 of the 77 articles together, then divided the
remaining to assess independently. After assessing them indepen-
dently, together we discussed any discrepancies or questions that
we had regarding our own set. Once the discrepancies were re-
solved, we identified 19 articles that qualified for inclusion in the
next step [6, 28, 31, 33, 35, 40, 42, 43, 50, 54-56, 60—63, 65, 74, 75].

5.3.1 Step3A: Ancestry Searches. Before proceeding with Step 4,
we reflected on the 19 articles and questioned whether or not this
represented a complete set. For example, missing from these 19
was the recent work by Malmi et al. [41], which is an important
work to consider. Likewise, Horn and Bers (2019) [32] report on
Tangible Computing was also missing from the list. In addition, the
authors were aware of two evaluation instruments measuring the
K-12 computing education enacted curriculum that use classifiers
for TLEs [4, 21] that were relevant to our study.

We then performed an ancestry search to review the references
of all 19 articles plus Malmi et al.’s and Horn and Bers’ work, and
determine if there were additional articles from these that could
be relevant to our study. Upon review, we found an additional 13
articles that were added to our list of qualifying articles [3, 12—
14, 18, 30, 47, 48, 57-59, 64, 66].1 Thus, we added an additional 17
articles to be reviewed in Step 4, for a total of 36 articles.

5.4 SLR Step 4: Summarizing the evidence

Of the 36 articles we found through this SLR, we examined each
to determine what each article offered with respect to taxonomy,
classification, or ontology of TLEs for computing education. The
original categories as defined by the authors of these articles are
reported in Tables 1 and 2 for ease of reading and referencing, and
we discuss the findings in Section 5.5.

During this step, we eliminated Louca and Zacharia [40] because
their classification of languages was in only two categories: textual
and graphical, without further categorizations. We felt that those
categorizations of languages were well represented by many of
the other taxonomies and we did not include their work in the
tables. Myers has two papers in the SLR results [47, 48] that both
present the same taxonomy. The Myers taxonomy is only listed once
in the summary table. The same situation occurs for Rongas and
Kalviainen [60, 61], where again there were two papers uncovered
in the SLR that present the same taxonomy, leaving 33 distinct
taxonomies summarized by the tables.

5.5 SLR Step 5: Interpreting the findings

Step 5 of the systematic literature review is named "Interpreting
the findings", however, it actually calls for the SLR researchers to
determine whether or not the overall summary (provided in Step 4)
can be trusted. For our SLR, each step was completed in a thorough
manner, with reflection and discussion during each step. Hetero-
geneity was achieved throughout proper implementation of each of
the steps, and we have noted when and why we have included (as
well as excluded) articles. Through regular discussions throughout
the entire process and careful adherence to procedures of the SLR,
we conclude that any biases regarding the publications are limited
in scope. We explored limitations of our initial assessment of the
quality of the studies, and added an additional substep to perform
an ancestry search. We also added additional recent materials that
we were familiar with that were not on the list and performed an
ancestry on these materials as well. We further ensured that each
article or other material reviewed was of high quality, with many of
the articles published in ACM and IEEE journals and conferences.

Therefore, we have a strong level of assurance that the literature
referenced in Section 5.4 contains a thorough, heterogeneous set of
articles that are ready for further analysis for building a taxonomy.

6 BUILDING THE TAXONOMY

To build the taxonomy, we worked together and took the results
of the 136 categories defined in the 33 distinct taxonomies from
the SLR (those shown in Tables 1 and 2) and placed each of the

I Three books that appeared to contain information on visual programming languages
[25, 26, 29] were also cited by other studies, but we were unable to secure copies for
this study and did not include these in our analysis.

categories in separate rows in a spreadsheet. We then examined
each individually to determine if there was overlap among the
categories. In many cases, we needed to search for the context of
the taxonomy from the original article, considering its age and the
terminology used which varied across studies. In other cases, we
had to determine if they were trying to define the same category
as another article’s, but just named differently.

Upon completion, we had defined 66 new categories that cap-
tured all 136 original categories, and we added these 66 to a new
worksheet. Studying these, we saw that some categories were sys-
tem features (e.g., cost, ease of use, supports collaborative learning),
while others were oriented toward common descriptors of program-
ming environments (e.g., block-based programming, text-based pro-
gramming). To further group these categories and eliminate those
that were only tangentially related to our goals, we borrowed from
Burnett and Baker’s arrangement of five categories of visual pro-
gramming languages [14]: Taxonomy, Features, Implementation
Issues, Purpose, and Theory. This gave us a way to clarify whether
or not each of 66 categories could be represented in a new taxon-
omy or perhaps another category (e.g., implementation issues such
as which operating system it needed to operate). This grouping
resulted in 27 categories classified as actual TLE Taxonomy (see
Table 3), while others were better suited for one of the other Burnett
and Baker categories.

Our next step was to examine the 27 categories identified as
Taxonomy and determine similarities and differences. Our goal was
to see if there were natural groups among the categories. Work-
ing together through a lengthy process of discussion and debate,
our work culminated in two major components: the Engagement
& Empowerment Medium and the Digital Programming Environ-
ment Dimensions. We immediately saw that the groupings derived
from these 33 articles in part reflected work performed by Kelleher
and Pausch [35], though interpreted differently. The taxonomy is
presented in the next section (7) and further discussion of these
differences follows in Section 8.

7 PROPOSED TAXONOMY

As mentioned in section 6, we found two major groups through our
analysis, Engagement & Empowerment Medium (hereafter referred
to as E&E Medium) and Digital Programming Environment Dimen-
sions (hereafter referred to as Dimensions). The taxonomy for the
E&E Medium group contains Non-programming Environments and
Programming Environments (see Figure 1). Non-programming envi-
ronments are defined as CS/Computational Thinking (CT)-Specific
or Non-CS/CT Specific, and each of these can have subcategories
of Digital or Non-digital (see Table 4). Programming environments
can be defined as General Purpose, Device, Simulation, Digital Me-
dia, Data Manipulation, Smart Blocks, Visualization of Computing
Processes and Finite State Machine (see Table 5).

Dimensions consist of the dimensions of the environments and
are represented orthogonal to the E&E Medium. Dimensions consist
of Automated Assessment and Submission Tools, Gamified Sys-
tems, Integrated Development Environments, Teaching Systems,
and Sandbox Systems (see Table 6).

We present these two groupings across Tables 4, 5, and 6, includ-
ing definitions and examples. To ensure the taxonomy is relevant

Table 1: Summarizing the evidence, presented by ascending years, 1986-2005.

Author (Year) [Ref]

Subject of Taxonomy

Main categories defined

Myers (1986,1990) [47, 48]

Dart et al. (1987) [18]
Brown (1988) [12]
Perry et al. (1988) [57]
Singh (1990) [64]

Stasko et al. (1992) [66]
Mancoridis (1993) [42]

Price et al. (1993) [58]
Roman et al. (1993) [59]

Burnett (1994) [14]

Green et al. (1996) [30]

Naps et al. (2002) [50]

Yehezkel (2002) [75]

Wright et al. (2003) [74]

Beckwith et al. (2004) [6]

Rongas et al. (2004) [60, 61]

Gomez-Albarran (2005)

(28]

Thantola et al. (2005) [33]

Kelleher et al. (2005) [35]

Visual Programming and
Program Visualization

Software Development
Environments
Algorithm Animation
Displays

Software Development
Environments
Graphical Support for
Programming
Software Visualizations
Software Development
Environments
Software Visualization
Program Visualization
Systems

Visual Programming
Languages

Cognitive Dimensions of
Visual Programming
Environments

Learner Engagement with
Visualization Technology
Computer Architecture
Visualizations
Programming
Environments

Gender Difference Relevant
to End User Programming
Computerized Learning
Tools for Introductory
Programming Courses
Tools to Support the
Teaching and Learning of
Programming

Ability of Systems to
Create Algorithm
Visualizations Effortlessly
Programming
Environments and
Languages for Novice
Programmers

(1) Taxonomy of programming systems: Visual programming or not,
Example-based programming or not, Interpretive or compiled (orthogonal
criteria) (2) Classification of Specification Technique: Textual languages,
Flowcharts, Flowchart derivatives, Petri nets, Data flow graphs, Directed
graphs, Graph derivatives, Matrices, Jigsaw puzzle pieces, Forms, Iconic
sentences, Spreadsheets, Demonstrational, None (3) Taxonomy of Program
Visualization Systems: Code, Data, Algorithm

Language-centered; Structure-oriented; Toolkit; Method-based

Content; Persistence; Transformation
Individual; Family; City; State
Programming; Visualization

Aspect; Abstractness; Animation; Automation
Scale; Genericity; Integration; History

Scope; Content; Form; Interaction; Effectiveness
Scope; Abstraction; Specification Method; Interface; Presentation

Environments and Tools for VPLs; Language Classifications; Language
Features; Language Implementation Issues; Language Purpose; Theory of
VPLs

Abstraction gradient; Closeness of mapping; Consistency; Diffuseness;
Error-proneness; Hard mental operations; Hidden dependencies;
Premature commitment; Progressive evaluation; Role-expressiveness;
Secondary notation; Viscosity; Visibility

No viewing; Viewing; Responding; Changing; Constructing; Presenting

Scope of Operation; Content Modeling; Presentation Methods; Activity
Styles

Level one: How many languages exist in environment; Level Two: How
user manipulates the languages: Reading programs, Writing programs,
Watching programs run; Also identified gulfs where the three tasks are
supported differently: expression, representation, visualization
Confidence; Support; Motivation

Support for Problem Solving; Syntax; Semantics; Pragmatics; Support for
Self-Study; Support for Teacher; Suitablity for a Newcomer

Tools with a Reduced Development Environment; Example-based
Environments; Tools Based on Visualization; Simulation Environments

Scope; Integrability; Interaction: producer-system interaction,
visualization-consumer interaction

Teaching Systems: Mechanics of Programming, Make Programming
Concrete, Learning Support; Empowering Systems: Mechanics of
Programming, Activities Enhanced by Programming

Table 2: Summarizing the evidence, presented by ascending years, 2006-2020.

Author (Year) [Ref]

Subject of Taxonomy

Main categories defined

Hernéan-Losada et al.
(2006) [31]

Parker et al. (2006) [55]

Pears et al. (2007) [56]

Mason et al. (2012) [43]

Orehovacki et al. (2012)
[54]

Sorva et al. (2013) [65]

Brusilovsky et al. (2014)
(13]

Saito et al. (2017) [62]

Angel-Fernandez et al.
(2018) [3]

Falkner et. al. (2019)
[21]
Horn et al. (2019) [32]

Malmi et al. (2019) [41]

Scaradozzi et al. (2019)
(63]

Anwar et al. (2020) [4]

Creating Tools Mapped to
Bloom’s Taxonomy

Selecting a Language for
Introductory Programming
Courses

Research on Tools in
Introductory Programming
Literature

Programming Languages

Web 2.0 Applications with
Educational Potential

Program Visualization
Systems for Introductory
Programming Education

Smart Learning Content

Programming Learning
Tools for Children

Educational Robotics

Programming
Environments

Tangible Computing

Tools

Tools, Experiences,
Assessments for
Educational Robotics

Programming
Environments

Knowledge-quizzes; Comprehension-translate, predict, but no methods;
Application-problems posed can be solved directly by applying given
methods; Analysis-decompose a program into its constituent parts,
examine its relations, studying different possibilities; Synthesis-tools to
solve problems by means of any solution; Evaluation-tools must be able to
compare different alternatives

Software Cost; Programming Language Acceptance in Academia;
Programming Language Industry Penetration; Software Characteristics;
Student-Friendly Features; Language Pedagogical Features; Language
Intent; Language Design; Language Paradigm; Language Support and
Required Training; Student Experience

Visualization Tools; Automated Assessment Tools; Programming
Environments; Programming Support Tools; Microworlds; Other Tools

Procedural; Functional; Object-oriented; Mixture

Function of Application; Cognitive Processes from Revised Bloom’s
Taxonomy

Extends Naps et. al taxonomy [50] to include another dimension: Content
Ownership: Given Content, Own Cases, Modified Content, Own Content

Dimensions; Pedagogical Content

Style of Programming; Programming Constructs; Representation of Code;
Construction of Programs; Support to understand programs; Designed
accessible languages; Game elements; Supporting language; Operating
Environments; Interface; Experience

Robotics as Learning Object; Robotics as Learning Tool; Robots as
Learning Aids

"Unplugged"/non-digital programming; Symbolic (text-free) visual
programming; Block-based visual programming; Hybrid visual to junior
text programming; General Purpose/Textbased Programming;

Smart Block Languages; Tangible Demonstration Languages; Externally
Compiled Languages

Software Applications; Web Application Providing some Service; Software
Frameworks; Definition Language

(1) Experiences: Learning Evironment; Impact on Curriculum; Integration
of the Robotic Tool; Evaluation of Activities

(2) Educational Robotics Tools: Age; Programming Language; Assembly
feature; Robot’s Environment

"Unplugged"/non-digital Programming Using Human or Tangible Objects
or Manipulatives; General Purpose/Text-based Programming without
Computers; General Purpose/Text-based Programming with Computers;
Visual Programming;

Table 3: Our 66 refined categories grouped according to Bur-
nett and Baker’s classification [14]. Only 27 were part of an
actual taxonomy, while others fell into the definitions for
system features, implementation specifications, purpose, or
theories.

Category N Examples

Taxonomy 27 Unplugged activities, Text-based
environments, Robotics

Feature 31 Ease of use, Step-wise control of

visualization, Languages supported

Implementation 5 Operating systems, Cost

Purpose 2 Language purpose, Scope

Theory 4 Supports learner, Supports

problem-solving

{ Engagement & Empowerment Medium]

Non-Programming Programming
Environments Environments

CS/CT Specific ’ —{ General Purpose ’

—{ Device ’
—{ Simulation ’

— Digital Media |

Non-CS/CT Specific y

—{ Data Manipulation ’

4{ Smart Blocks ’

Visualization of Com-
puting Processes

—{ Finite State Machine

Figure 1: Engagement & Empowerment Medium Hierarchy.
Non-programming environments are described in Table 4
while programming environments are described in Table 5.
CT refers to Computational Thinking,.

for K-12 CS education, the examples primarily come from the pub-
licly available dataset at https://csedresearch.org, supplemented
where needed. These groups are further discussed in section 8.

8 DISCUSSION

While we also found two main groupings (E&E Medium and Di-
mensions) similar to the work of Kelleher and Pausch [35], there
are some distinct differences in our eventual taxonomy categoriza-
tions. First, teaching systems are a characteristic that programming
environments can have. That is, the environment could have been
designed explicitly for teaching. However, there are many tools
that are used in the teaching of computing that were not designed
for this purpose and it was important to reflect these in our tax-
onomy. The name and themes represented in E&E Medium was
influenced by this earlier work [35], but has a key difference in
that it includes the possibility that all systems can be engaging and
empowering within their own domains and context and that much
of the empowerment actually comes externally from the curriculum
and classroom in which the system is presented. Lastly, we do not
dictate, nor require, that each system fit squarely into one and only
one categorization in the taxonomy. It is possible for a system to fit
into multiple categories.

Several items in Programming Environments (Table 5) warrant
further elaboration. When looking at the subcategories (Block-
based with symbols, Block-based with text, Hybrid, and Text-based),
there are fewer examples of Block-based with symbols or the Hy-
brid medium. The Block-based with symbol examples have often
been designed for pre-reading age students, which, prior to a few
years ago, were not a population previously served by comput-
ing education. With the shift into K-12 and with the introduction
and proliferation of block-based with text environments and tools
[45], we see a need developing for bridge (hybrid) languages to
shift students from a blocks-based environments and to traditional
text-based coding environments that still dominate professional
software development. These areas seem to be poised to grow in
the near future to fill these growing needs.

In terms of subcategories, Device is novel. The intent of this
category is to capture environments for which the target of the
computation may not be a traditional computer with monitor and
keyboard. Examples of this include environments used to create
programs to run on robots of various types, mobile phones, and
circuit and LED boards. This is another area where there seems to
be growth potential for new environments that create code to be
run on external devices or embedded systems.

While we have currently separated the Simulation and Digi-
tal Media subcategories, this distinction may be artificial and not
needed. There is evidence from the SLR that a category of envi-
ronments that deal with simulations and microworlds should exist
[28, 35, 56]. However, many of the taxonomies found in our SLR
were created before digital media manipulation was possible to
the degree it is today. While games could arguably be considered
simulations, environments specifically designed to manipulate me-
dia as computation are not necessarily simulations, but all of these
environments may be able to be combined into a single category
with a comprehensive label. In our future work to vet the taxonomy,
we will need to explore if this distinction is still necessary.

Data Manipulation programming environments are those that
target the manipulation of data. As the field of data science con-
tinues to grow, and pushes are being made to include data science
within K-12 education [1] as well as post-secondary education [17],

https://csedresearch.org

Table 4: Engagement & Empowerment Medium -> Non-programming environments used to teach computing,.
All examples come from the https://csedresearch.org dataset, 2012-2019, unless denoted by *. CT refers to Computational

Thinking.
Category Description Digital Non-Digital
CS/CT-Specific ~ TLEs specifically created to support learning Robot NAO, E-textiles, Raspberry Pi Potato Pirates™,
of computing and computing concepts Robot Turtles*
Non-CS/CT- TLEs created to support general learning or ~ New York Times Mapping America, Barrel of Monkeys”,
Specific for general usage Google Drive, Youtube Beads”, Buttons®
Table 5: Engagement & Empowerment Medium -> Programming Environments.
All examples are from the https://csedresearch.org dataset, 2012-2019, unless denoted by .
See Discussion (Section 8) for more information on categories denoted by **.
Category Provides capability for user to: Block-based Block-based Hybrid Text-based
Symbolic Text
General-Purpose Create any type of program. Scratch Jr Scratch Pencil Code, BlueJ*, Eclipse”
Stride*
Device Create programs that target a Lego Applnventor - Arduino
specific device or system. Mindstorms
Simulation Program a simulation or withina Lightbot™ TurtleArt Alice, Stride* Greenfoot,
microworld environment. Karel*
Digital Media Produce media including graphics, Kodu AgentSheets, - GameMaker,
sound, or games. GameMaker Earsketch,
Processing
Data Manipulation Manipulate data computationally - VisComposer®, - R*
(data science). Tableau®
Physical Smart Create a program using a Electronic KIBO* N/A N/A
Blocks programming interface by Blocks, roBlocks,
assembling physical elements. Bee-Bot*
Visualization of Create visualizations of computing - - - Jeliot™, Alvis*
Computing processes or algorithms.
Processes™
Finite State Create finite state machines as - jFast® - -

Machine**

computational engines.

we anticipate that future environments may be created (including
those that are symbolic block-based) to meet this need.
Physical Smart Blocks are a relatively new subcategory where

The last two subcategories, Visualization of Computing Pro-
cesses and Finite State Machines, represent categories where mod-
ern examples were scarce in the K-12 literature. This was not sur-

physical objects, in most cases physical blocks, are the computation
devices [32]. This is distinct from the idea of a robot or external
device onto which a program is loaded. Instead, it is the assembling
of these devices themselves that creates the computation. Because
of the nature of these types of environments, they would seem
unlikely to be categorized as hybrid or text-based and we have
marked them as N/A in the table to indicate this.

prising given that these concepts are more advanced computing con-
cepts that would often be covered in the post-secondary level. How-
ever, there is considerable historical context for their inclusion that
is derived from the SLR [12, 30, 33, 47, 48, 50, 58, 59, 62, 65, 66, 75].
More research is needed to find the current state of these envi-
ronments. We leave open the possibility that, while historically
these environments were created and may have been important,
their importance and significance may not be what it once was
and these categories may need to be removed-particularly, if these
environments were not currently active, used, or maintained.

https://csedresearch.org
https://csedresearch.org

Table 6: Digital Programming Environment Dimensions.
All examples come from the https://csedresearch.org dataset, 2012-2019, unless denoted by *.

Dimension Description

Example

Automated Assessment
and Submission Tools grams

Gamified Systems
leaderboards)

Integrated Development

Environment runtime diagnostics

Teaching Systems

Provide ability to submit and give feedback and scoring/grading for pro- Web-CAT", Gradescope*

Provide gamified elements to the learning process (e.g., points, badges, Codespells, Gidget

Provides programming language(s), code editing, compilation, debugging, Eclipse®, Processing, Scratch

"Simple programming tools that provide novice programmers with exposure Lego Mindstorms, Kodu

to some of the fundamental aspects of the programming process” [35, p. 84]

Sandbox Systems

Provide open-ended spaces for exploration and learning

Minecraft, Alice

Turning our attention to the non-programming environments
(Table 4), we acknowledge other environments that complement
programming environments and can be used to teach computing
concepts (e.g., computational thinking) and to engage students. For
most, the environment itself would be ineffective at teaching com-
puting concepts. It is the environment coupled with a structured
curriculum that becomes a conduit for students to learn comput-
ing concepts. For example, it is not uncommon for teachers to use
physical manipulatives (e.g., beads, buttons, toys, divided bins, egg
cartons or games) in their classrooms to help students understand
computing concepts or algorithms. The tool itself is not a program-
ming environment, but rather the curriculum built around the tool
empowers the learning of computing.

Dimensions (Table 6) should be viewed as orthogonal to the cat-
egorizations in Table 5. They represent broad features that may
be available across many programming environments to varying
degrees. We placed the notion of Teaching Systems as defined by
Kelleher and Pausch in Dimensions [35]. Any of the programming
environments that are categorized in Table 5 could be Teaching
Systems if they were designed with instruction and learning at
the forefront (e.g., reduced environment features [28]). However,
programming environments may not have strong Teaching Sys-
tems features if they were originally designed for another purpose,
though still used to teach computing (e.g., using Emacs with a C++
compiler running from a command line). There is certainly room
for additional research into these Dimensions to describe the many
features that each contain and to ensure that this is a complete set.

One key feature that is conspicuously missing from our tables
and categories is the notion of programming languages. This was an
interesting development for us during the taxonomy creation pro-
cess. We decided that support for a language or paradigm is actually
a feature of an environment, but one of only many dimensions that
teachers may be looking for in an environment to support peda-
gogy. In our SLR, we identified 31 such features (Table 3) that could
be important, including reduced language features [28], support
for collaboration [54], version control [12], debugging [28, 62], and
other user interface issues. While support for a particular language
or paradigm can be an important feature, it is also the case that

many modern environments support multiple languages. This trend
is likely to continue to allow for wider adoption in more varied
circumstances. For example, in our Device subcategory (Table 5),
many of the robots can be programmed in multiple languages and
the executable code loaded onto and executed on the robot.

9 CONCLUSION AND FUTURE WORK

With the completion of the first phase of our taxonomy, our next
steps mirror steps 4 through 7 of Whittaker and Breininger’s tax-
onomy building process [73] (Section 3) and are directed towards
gathering evidence of validity and reliability. In the case of vali-
dating the Engineering Education Research taxonomy, Finelli et al.
were able to verify that researchers could assign sets of data to the
same terms with a high degree of agreement, that the taxonomy
was complete and that there was an even distribution of the data
across the proposed terms [22]. This is similar to a Closed Card
Sorting exercise in UX design [53, 68], in which participants are
given a set of items (typically on individual cards) and predefined
categories (like our taxonomy categories), and are asked to place
each item in a category. This provides information on the level
of agreement in which participants place the cards in the same
categories and whether all of the items can be placed.

Borrowing from these methods, our next stage of this process
includes the following steps:

o Gather evidence for face validity by reviewing the taxonomy
with users and subject matter experts,

o Refine the taxonomy based on feedback,

Gather evidence of content validity by administering a

Closed Card Sorting exercise,

e Revise groupings based on results of the Closed Card Sorting
exercise, and if needed administer a second Closed Card
Sorting exercise, and

e Manage and maintain the taxonomy, including integrating
the taxonomy where possible.

Through these measures, we can ensure that the wider computer
science education research community has input into the terms
and definitions used in the taxonomy and that it further meets the
needs of the community.

https://csedresearch.org

10

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S. National
Science Foundation under Grant Nos. 1625005, 1625335, 1757402,
1745199, and 1933671.

REFERENCES

(1]

(3]

[4

flaa

(5

=

l6

(7]

8

=

[9

[10]

(1]

[12]

[13

[14

[15]

[16]

[17

(18]

[19

[20]
[21

[22]

[23

ACM Computer Science Teachers Association (CSTA). 2017. Computer science
standards. Computer Science Teachers Association (2017).

Amal Al-Abri, Yassine Jamoussi, Naoufel Kraiem, and Zuhoor Al-Khanjari. 2017.
Comprehensive classification of collaboration approaches in E-learning. Telem-
atics and Informatics 34, 6 (2017), 878-893.

Julian M Angel-Fernandez and Markus Vincze. 2018. Towards a definition of
educational robotics. In Austrian Robotics Workshop 2018. 37.

Tehreem Anwar, Arturo Jimenez, Arsalan Najeeb, Bishakha Upadhyaya, and
Monica M. McGill. 2020. Exploring the Enacted Computing Curriculum inK-12
Schools in South Asia:Bangladesh, Nepal, Pakistan, and Sri Lanka. In Proceedings
of the International Computer Education Research conference. Association for
Computing Machinery, New York, NY, USA.

Henri Barki, Suzanne Rivard, and Jean Talbot. 1988. An information systems
keyword classification scheme. MIS quarterly (1988), 299-322.

Laura Beckwith and Margaret Burnett. 2004. Gender: An important factor in end-
user programming environments?. In 2004 IEEE symposium on visual languages-
human centric computing. IEEE, 107-114.

Jyoti Belur, Lisa Tompson, Amy Thornton, and Miranda Simon. 2018. Inter-
rater reliability in systematic review methodology: exploring variation in coder
decision-making. Sociological methods & research (2018), 0049124118799372.
John B Biggs and Kevin F Collis. 1982. Evaluation the quality of learning: the
SOLO taxonomy (structure of the observed learning outcome). Academic Press.

S Bloom Benjamin and David R Krathwohl. 1956. Taxonomy of educational
objectives: The classification of educational goals. Handbook I: Cognitive Domain.
New York: David McKay (1956).

Luca Botturi, Michael Derntl, Eddy Boot, and Kathrin Figl. 2006. A classification
framework for educational modeling languages in instructional design. In 6th
IEEE International Conference on Advanced Learning Technologies (ICALT 2006).
Matt Bower. 2008. A taxonomy of task types in computing. In Proceedings of the
13th annual conference on Innovation and technology in computer science education.
281-285.

Marc H Brown. 1988. Perspectives on algorithm animation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 33-38.

Peter Brusilovsky, Stephen Edwards, Amruth Kumar, Lauri Malmi, Luciana
Benotti, Duane Buck, Petri Thantola, Rikki Prince, Teemu Sirkid, Sergey Sos-
novsky, et al. 2014. Increasing adoption of smart learning content for computer
science education. In Proceedings of the Working Group Reports of the 2014 on
Innovation & Technology in Computer Science Education Conference. 31-57.
Margaret M. Burnett and Marla J. Baker. 1994. A classification system for visual
programming languages. Journal of Visual Languages and Computing 5, 3 (1994),
287-300.

Charles H Calisher. 2007. Taxonomy: What’s in a name? Doesn’t a rose by
any other name smell as sweet? Croatian medical journal 48, 2 (2007), 268.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080517/

David D Chen. 2003. A classification system for metaphors about teaching.
Journal of Physical Education, Recreation & Dance 74, 2 (2003), 24-31.

Andrea Danyluk, Paul Leidig, Lillian Cassel, and Christian Servin. 2019. ACM Task
Force on Data Science Education: Draft Report and Opportunity for Feedback. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education.
496-497.

S. Dart, R. Ellison, A. Habermann, and P. Feiler. 1987. Software Development
Environments. Computer 20, 11 (nov 1987), 18-28. https://doi.org/10.1109/MC.
1987.1663413

Fadi P Deek and James A McHugh. 1998. A survey and critical analysis of tools
for learning programming. Computer Science Education 8, 2 (1998), 130-178.
Melvil Dewey. 1876. Decimal classification and relative index...

Katrina Falkner, Sue Sentance, Rebecca Vivian, Sarah Barksdale, Leonard Busut-
til, Elizabeth Cole, Christine Liebe, Francesco Maiorana, Monica M. McGill, and
Keith Quille. 2019. An International Study Piloting the MEasuring TeacheR
Enacted Computing Curriculum (METRECC) Instrument. In Proceedings of the
Working Group Reports on Innovation and Technology in Computer Science Edu-
cation (ITiCSE-WGR °19). Association for Computing Machinery, New York, NY,
USA, 111-142. https://doi.org/10.1145/3344429.3372505

Cynthia J Finelli, Maura Borrego, and Golnoosh Rasoulifar. 2015. Development of
a taxonomy of keywords for engineering education research. IEEE Transactions
on Education 58, 4 (2015), 219-241.

Ursula Fuller, Colin G Johnson, Tuukka Ahoniemi, Diana Cukierman, Isidoro
Hernan-Losada, Jana Jackova, Essi Lahtinen, Tracy L Lewis, Donna McGee
Thompson, Charles Riedesel, et al. 2007. Developing a computer science-specific

S
=)

S
)

~
)

™~
&,

'w
=

@
=

(32]

[33

[34

[35

[36

[37

[38

[39

~
=2

[41

[42

[43]

[44

[45

[46

[47

(48

learning taxonomy. ACM SIGCSE Bulletin 39, 4 (2007), 152-170.

Tatiana Gavrilova, Rosta Farzan, and Peter Brusilovsky. 2005. One practical
algorithm of creating teaching ontologies. In 12th International Network-Based
Education Conference NBE. Citeseer, 29-37.

Ephraim P Glinert. 1990. Visual programming environments: Applications and
issues. IEEE Computer Society Press.

Ephraim P Glinert. 1990. Visual programming environments: paradigms and
systems. IEEE Computer Society Press.

Anabela Gomes and Antonio Mendes. 2009. Bloom’s taxonomy based approach
to learn basic programming. In EdMedia+ Innovate Learning. Association for the
Advancement of Computing in Education (AACE), 2547-2554.

Mercedes Gomez-Albarran. 2005. The teaching and learning of programming: a
survey of supporting software tools. Comput. . 48, 2 (2005), 130-144.

TRG Green. 1991. NC Shu,£ 25.95, Visual Programming, Van Nostrand Reinhold,
New York (1988), 315 pp, ISBN: 0-442-28014-9.

Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual pro-
gramming environments: a ‘cognitive dimensions’ framework. Journal of Visual
Languages & Computing 7, 2 (1996), 131-174.

Isidoro Hernan-Losada, JA Veldzquez-Tturbide, and CA Lazaro-Carrascosa. 2006.
Programming learning tools based on Bloom’s taxonomy: proposal and accom-
plishments. In Proceedings of the 8th International Symposium of Computers in
Education (SIIE 2006).(Leon, Spain. 325-334.

M. Horn and M. Bers. 2019. Tangible Computing. In The Cambridge Handbook of
Computing Education Research, S.A. Fincher and A.V. Robins (Eds.). Cambridge
University Press, Cambridge, UK, Chapter 22, 663-678.

Petri Thantola, Ville Karavirta, Ari Korhonen, and Jussi Nikander. 2005. Taxon-
omy of effortless creation of algorithm visualizations. In Proceedings of the first
international workshop on Computing education research. 123-133.

Cruz Izu, Amali Weerasinghe, and Cheryl Pope. 2016. A study of code design
skills in novice programmers using the SOLO taxonomy. In Proceedings of the
2016 ACM Conference on International Computing Education Research. 251-259.
Caitlin Kelleher and Randy Pausch. 2005. Lowering the barriers to program-
ming: A taxonomy of programming environments and languages for novice
programmers. ACM Computing Surveys (CSUR) 37, 2 (2005), 83-137.

Khalid S Khan, Regina Kunz, Jos Kleijnen, and Gerd Antes. 2003. Five steps to
conducting a systematic review. Journal of the royal society of medicine 96, 3
(2003), 118-121.

David R Krathwohl. 2002. A revision of Bloom’s taxonomy: An overview. Theory
into practice 41, 4 (2002), 212-218.

Adidah Lajis, Haidawati Md Nasir, and Normaziah A Aziz. 2018. Proposed assess-
ment framework based on bloom taxonomy cognitive competency: Introduction
to programming. In Proceedings of the 2018 7th International Conference on Soft-
ware and Computer Applications. 97-101.

Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L Whalley, and Chris-
tine Prasad. 2006. Not seeing the forest for the trees: novice programmers and
the SOLO taxonomy. ACM SIGCSE Bulletin 38, 3 (2006), 118-122.

Loucas T Louca and Zacharia C Zacharia. 2008. The use of computer-based pro-
gramming environments as computer modelling tools in early science education:
The cases of textual and graphical program languages. International Journal of
Science Education 30, 3 (2008), 287-323.

Lauri Malmi, Ian Utting, and Amy Ko. 2019. Tools and environments. In The
Cambridge Handbook of Computing Education Research, S.A. Fincher and AV.
Robins (Eds.). Cambridge University Press, Cambridge, UK, Chapter 21, 639-662.
Spiros Mancoridis. 1993. A multi-dimensional taxonomy of software development
environments. In Proceedings of the 1993 conference of the Centre for Advanced
Studies on Collaborative research: software engineering-Volume 1. IBM Press, 581
594.

Raina Mason, Graham Cooper, and Michael de Raadt. 2012. Trends in introductory
programming courses in Australian universities: languages, environments and
pedagogy. In Proceedings of the Fourteenth Australasian Computing Education
Conference-Volume 123. 33-42.

Matchcraft Sales & Training. 2015. What is Taxonomy (And Why is
it So Important to Search Marketing)? https://www.matchcraft.com/
what-is-taxonomy-and-why-is-it-so-important- to-search-marketing/

Monica M McGill and Adrienne Decker. 2020. Tools, Languages, and Environ-
ments Used in Primary and Secondary Computing Education. In Proceedings
of the 25th annual conference on Innovation and technology in computer science
education. ACM.

Greg Moody, Taylor Wells, and Paul Benjamin Lowry. 2007. The Interactive
Digital Entertainment (IDE) unification framework: creating a taxonomy of IDE
and lifestyle computing. In 2007 40th Annual Hawaii International Conference on
System Sciences (HICSS’07). IEEE, 160a-160a.

Brad A Myers. 1986. Visual programming, programming by example, and program
visualization: a taxonomy. ACM SIGCHI Bulletin 17, 4 (1986), 59-66.

Brad A Myers. 1990. Taxonomies of visual programming and program visualiza-
tion. Journal of Visual Languages & Computing 1, 1 (1990), 97-123.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080517/
https://doi.org/10.1109/MC.1987.1663413
https://doi.org/10.1109/MC.1987.1663413
https://doi.org/10.1145/3344429.3372505
https://www.matchcraft.com/what-is-taxonomy-and-why-is-it-so-important-to-search-marketing/
https://www.matchcraft.com/what-is-taxonomy-and-why-is-it-so-important-to-search-marketing/

[49

[50

(51

[52

[53

(54

[55

[56

[57

[58

[59

[60

(61

]

]

]

]

]

Rafi Nachmias and Inbal Tuvi. 2001. Taxonomy of scientifically oriented ed-
ucational websites. Journal of Science Education and Technology 10, 1 (2001),
93-104.

Thomas L Naps, Guido Ré83ling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer,
Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger,
et al. 2002. Exploring the role of visualization and engagement in computer
science education. In Working group reports from ITiCSE on Innovation and
technology in computer science education. 131-152.

National Center for Biotechnology Information, U.S. National Library of Medicine.
2020. The Taxonomy Database. https://www.ncbi.nlm.nih.gov/taxonomy
Robert Neches, Richard E Fikes, Tim Finin, Thomas Gruber, Ramesh Patil, Ted
Senator, and William R Swartout. 1991. Enabling technology for knowledge
sharing. Al magazine 12, 3 (1991), 36-36.

Optimal Workshop. 2020. Card Sorting 101: Your guide to creating and running an
effective card sort. https://www.optimalworkshop.com/learn/101s/card-sorting/
Tihomir Orehovacki, Goran Bubag, and Andreja Kovaci¢. 2012. Taxonomy of
Web 2.0 applications with educational potential. Transformation in teaching:
Social media strategies in higher education (2012), 43-72.

Kevin R Parker, Joseph T Chao, Thomas A Ottaway, and Jane Chang. 2006. A
formal language selection process for introductory programming courses. Journal
of Information Technology Education: Research 5, 1 (2006), 133-151.

Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams,
Jens Bennedsen, Marie Devlin, and James Paterson. 2007. A survey of literature
on the teaching of introductory programming. In Working group reports on ITiCSE
on Innovation and technology in computer science education. 204-223.

Dewayne E Perry and Gail E Kaiser. 1988. Models of software development
environments. In Proceedings of the 10th international conference on Software
engineering. IEEE Computer Society Press, 60-68.

Blaine A Price, Ronald M Baecker, and Ian S Small. 1993. A principled taxonomy
of software visualization. Journal of Visual Languages & Computing 4, 3 (1993),
211-266.

G-C Roman and Kenneth C Cox. 1993. A taxonomy of program visualization
systems. Computer 26, 12 (1993), 11-24.

Timo Rongas, Arto Kaarna, and Heikki Kalviainen. 2004. Classification of comput-
erized learning tools for introductory programming courses: learning approach.
In IEEE International Conference on Advanced Learning Technologies, 2004. Pro-
ceedings. IEEE, 678-680.

Timo Rongas, Arto Kaarna, and Heikki Kélvidinen. 2004. Classification of tools for
use in introductory programming courses. Lappeenranta University of Technology.

[62

[63

[64

[65]

=
2

[67]

o8]

[69

[70

[72

(73]

(74

[75

Daisuke Saito, Ayana Sasaki, Hironori Washizaki, Yoshiaki Fukazawa, and Yusuke
Muto. 2017. Program learning for beginners: survey and taxonomy of program-
ming learning tools. In 2017 IEEE 9th International Conference on Engineering
Education (ICEED). IEEE, 137-142.

David Scaradozzi, Laura Screpanti, and Lorenzo Cesaretti. 2019. Towards a defini-
tion of educational robotics: a classification of tools, experiences and assessments.
In Smart Learning with Educational Robotics. Springer, 63-92.

Gurminder Singh. 1990. Graphical support for programming: A survey and
taxonomy. In CG International’90. Springer, 331-359.

Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A review of generic pro-
gram visualization systems for introductory programming education. ACM
Transactions on Computing Education (TOCE) 13, 4 (2013), 1-64.

John T Stasko and Charles Patterson. 1992. Understanding and characterizing
software visualization systems. In Proceedings IEEE Workshop on Visual Languages.
IEEE, 3-10.

B Swartout, R Patil, K Knight, and T Russ. 1997. Towards distributed use of
large-scale ontologies. Spring Symposium Series on Ontological Engineering.
(1997).

U.S. Department of Health & Human Services. 2020. Card Sorting.
//www.usability.gov/how-to-and-tools/methods/card-sorting html
Michael S. Vasta. 2020. Product Taxonomy: Categorizing Your Website Hierarchy
to Increase Sales. https://www.bigcommerce.com/blog/product-taxonomy/
Euripides Vrachnos and Athanassios Jimoyiannis. 2017. Secondary education
students’ difficulties in algorithmic problems with arrays: An analysis using the
SOLO taxonomy. Themes in Science and Technology Education 10, 1 (2017), 31-52.
Zach Wahl. 2013. Taxonomy Consulting and the Impor-
tance of UX Design. https://enterprise-knowledge.com/
taxonomy- consulting-and- the-importance-of-ux-design/

Betsy Walli. 2014. Taxonomy 101: The Basics and Getting Started with Tax-
onomies. https://www.kmworld.com/Articles/ReadArticle.aspx?ArticleID=98787
Mary Whittaker and Kathryn Breininger. 2008. Taxonomy development for
knowledge management. In 74th general conference and council of the world
library and information, Quebec, Canada.

Tim Wright and Andy Cockburn. 2003. A language and task-based taxonomy of
programming environments. In IEEE Symposium on Human Centric Computing
Languages and Environments, 2003. Proceedings. 2003. IEEE, 192-194.

Cecile Yehezkel. 2002. A taxonomy of computer architecture visualizations. ACM
SIGCSE Bulletin 34, 3 (2002), 101-105.

https:

https://www.ncbi.nlm.nih.gov/taxonomy
https://www.optimalworkshop.com/learn/101s/card-sorting/
https://www.usability.gov/how-to-and-tools/methods/card-sorting.html
https://www.usability.gov/how-to-and-tools/methods/card-sorting.html
https://www.bigcommerce.com/blog/product-taxonomy/
https://enterprise-knowledge.com/taxonomy-consulting-and-the-importance-of-ux-design/
https://enterprise-knowledge.com/taxonomy-consulting-and-the-importance-of-ux-design/
https://www.kmworld.com/Articles/ReadArticle.aspx?ArticleID=98787

	Abstract
	1 Introduction
	2 Taxonomy Importance and Usage
	3 Methodology
	4 Working Definition of TLEs
	5 Systematic Literature Review
	5.1 SLR Step 1: Framing questions for a review
	5.2 SLR Step 2: Identifying relevant work
	5.3 SLR Step 3: Assessing the quality of studies
	5.4 SLR Step 4: Summarizing the evidence
	5.5 SLR Step 5: Interpreting the findings

	6 Building the Taxonomy
	7 Proposed Taxonomy
	8 Discussion
	9 Conclusion and Future Work
	10 Acknowledgements
	References

